These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25022363)

  • 21. Oscillatory squeeze flow of suspensions of magnetic polymerized chains.
    Kuzhir P; López-López MT; Vertelov G; Pradille Ch; Bossis G
    J Phys Condens Matter; 2008 May; 20(20):204132. PubMed ID: 21694261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids.
    Rodríguez-Arco L; López-López MT; Durán JD; Zubarev A; Chirikov D
    J Phys Condens Matter; 2011 Nov; 23(45):455101. PubMed ID: 21971064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition from two-dimensional to three-dimensional behavior in the self-assembly of magnetorheological fluids confined in thin slits.
    Haghgooie R; Doyle PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061406. PubMed ID: 17677262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscosity of magnetorheological fluids using Iron-silicon nanoparticles.
    Kim JH; Kim C; Lee SG; Hong TM; Choi JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6055-9. PubMed ID: 24205598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colloidal Stability and Magnetic Field-Induced Ordering of Magnetorheological Fluids Studied with a Quartz Crystal Microbalance.
    Rodriguez-López J; Castro P; de Vicente J; Johannsmann D; Elvira L; Morillas JR; Montero de Espinosa F
    Sensors (Basel); 2015 Dec; 15(12):30443-56. PubMed ID: 26690152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of the effect of particle volume fraction on the microstructure of magnetorheological fluids using ultrasound: Transition between the strong-link to the weak-link regimes.
    Rodríguez-López J; Castro P; Elvira L; Montero de Espinosa F
    Ultrasonics; 2015 Aug; 61():10-4. PubMed ID: 25890635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscoelasticity of mono- and polydisperse inverse ferrofluids.
    Saldivar-Guerrero R; Richter R; Rehberg I; Aksel N; Heymann L; Rodriguez-Fernández OS
    J Chem Phys; 2006 Aug; 125(8):084907. PubMed ID: 16965057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetization behavior of ferrofluids with cryogenically imaged dipolar chains.
    Klokkenburg M; Erné BH; Mendelev V; Ivanov AO
    J Phys Condens Matter; 2008 May; 20(20):204113. PubMed ID: 21694243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear ac responses of electro-magnetorheological fluids.
    Huang JP; Yu KW
    J Chem Phys; 2004 Oct; 121(15):7526-32. PubMed ID: 15473829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetorheological Fluids with Surface-Modified Iron Oxide Magnetic Particles with Controlled Size and Shape.
    Shen C; Oda Y; Matsubara M; Yabuki J; Yamanaka S; Abe H; Naito M; Muramatsu A; Kanie K
    ACS Appl Mater Interfaces; 2021 May; 13(17):20581-20588. PubMed ID: 33878870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Negative electrorheological behavior in suspensions of inorganic particles.
    Ramos-Tejada MM; Arroyo FJ; Delgado AV
    Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oscillatory-like relaxation behavior of light transmitted through ferrofluids.
    Li J; Qiu X; Lin Y; Liu X; Fu J; Miao H; Zhang Q; Zhang T
    Appl Opt; 2011 Oct; 50(30):5780-7. PubMed ID: 22015404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; Durán JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of iron-based magnetorheological fluids stabilized by addition of organoclay particles.
    López-López MT; Gómez-Ramírez A; Durán JD; González-Caballero F
    Langmuir; 2008 Jul; 24(14):7076-84. PubMed ID: 18540642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic characterization of extremely bidisperse magnetorheological fluids.
    Iglesias GR; López-López MT; Durán JD; González-Caballero F; Delgado AV
    J Colloid Interface Sci; 2012 Jul; 377(1):153-9. PubMed ID: 22520211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The squeeze strengthening effect on the rheological and microstructured behaviors of magnetorheological fluids: a molecular dynamics study.
    Pei P; Peng Y
    Soft Matter; 2021 Jan; 17(1):184-200. PubMed ID: 33332517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long time response of soft magnetorheological gels.
    An HN; Sun B; Picken SJ; Mendes E
    J Phys Chem B; 2012 Apr; 116(15):4702-11. PubMed ID: 22439870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous ferromagnetic ordering in magnetic fluids.
    Ivanov AO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011503. PubMed ID: 12935146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of self-assembled chaining in magnetorheological fluids.
    Climent E; Maxey MR; Karniadakis GE
    Langmuir; 2004 Jan; 20(2):507-13. PubMed ID: 15743097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.