These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 25022511)

  • 1. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor.
    Shi D; Huang J; Chuai Z; Chen D; Zhu X; Wang H; Peng J; Wu H; Huang Q; Fu W
    Biosens Bioelectron; 2014 Dec; 62():280-7. PubMed ID: 25022511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.
    Xiang Y; Zhu X; Huang Q; Zheng J; Fu W
    Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isothermal detection of multiple point mutations by a surface plasmon resonance biosensor with Au nanoparticles enhanced surface-anchored rolling circle amplification.
    Xiang Y; Deng K; Xia H; Yao C; Chen Q; Zhang L; Liu Z; Fu W
    Biosens Bioelectron; 2013 Nov; 49():442-9. PubMed ID: 23811476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz spectroscopy for the isothermal detection of bacterial DNA by magnetic bead-based rolling circle amplification.
    Yang X; Yang K; Zhao X; Lin Z; Liu Z; Luo S; Zhang Y; Wang Y; Fu W
    Analyst; 2017 Dec; 142(24):4661-4669. PubMed ID: 29119154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms on a solid surface using target-primed rolling circle amplification.
    Li Z; Li W; Cheng Y; Hao L
    Analyst; 2008 Sep; 133(9):1164-8. PubMed ID: 18709189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy.
    Liu R; Wang Q; Li Q; Yang X; Wang K; Nie W
    Biosens Bioelectron; 2017 Jan; 87():433-438. PubMed ID: 27589408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling circle amplification based colorimetric determination of Staphylococcus aureus.
    Li Y; Wang J; Wang S; Wang J
    Mikrochim Acta; 2020 Jan; 187(2):119. PubMed ID: 31927667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags.
    Huang YY; Hsu HY; Huang CJ
    Biosens Bioelectron; 2007 Jan; 22(6):980-5. PubMed ID: 16759844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomagnetic Detection of Rolling Circle Amplification Products.
    Minero GAS; Cangiano V; Fock J; Garbarino F; Hansen MF
    Methods Mol Biol; 2020; 2063():3-15. PubMed ID: 31667758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification.
    Long Y; Zhou X; Xing D
    Biosens Bioelectron; 2013 Aug; 46():102-7. PubMed ID: 23517825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.
    Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A
    Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles.
    Fu Z; Zhou X; Xing D
    Methods; 2013 Dec; 64(3):260-6. PubMed ID: 23948710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bead-based padlock rolling circle amplification for single DNA molecule counting.
    Sato K; Ishii R; Sasaki N; Sato K; Nilsson M
    Anal Biochem; 2013 Jun; 437(1):43-5. PubMed ID: 23467098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of circularizable probes for the detection of target nucleic acids and proteins.
    Zhang D; Wu J; Ye F; Feng T; Lee I; Yin B
    Clin Chim Acta; 2006 Jan; 363(1-2):61-70. PubMed ID: 16122721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions.
    Wang L; Li T; Du Y; Chen C; Li B; Zhou M; Dong S
    Biosens Bioelectron; 2010 Aug; 25(12):2622-6. PubMed ID: 20547052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled rolling circle amplification loop-mediated amplification for rapid detection of short DNA sequences.
    Marciniak J; Kummel A; Esener S; Heller M; Messmer B
    Biotechniques; 2008 Sep; 45(3):275-80. PubMed ID: 18778251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation detection and single-molecule counting using isothermal rolling-circle amplification.
    Lizardi PM; Huang X; Zhu Z; Bray-Ward P; Thomas DC; Ward DC
    Nat Genet; 1998 Jul; 19(3):225-32. PubMed ID: 9662393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turn-on optomagnetic bacterial DNA sequence detection using volume-amplified magnetic nanobeads.
    Bejhed RS; de la Torre TZ; Donolato M; Hansen MF; Svedlindh P; Strömberg M
    Biosens Bioelectron; 2015 Apr; 66():405-11. PubMed ID: 25483917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy.
    Hu J; Zhang CY
    Anal Chem; 2010 Nov; 82(21):8991-7. PubMed ID: 20919697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.