BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 25022825)

  • 1. Artificial microRNA mediated gene silencing in plants: progress and perspectives.
    Tiwari M; Sharma D; Trivedi PK
    Plant Mol Biol; 2014 Sep; 86(1-2):1-18. PubMed ID: 25022825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial microRNAs (amiRNAs) engineering - On how microRNA-based silencing methods have affected current plant silencing research.
    Sablok G; Pérez-Quintero AL; Hassan M; Tatarinova TV; López C
    Biochem Biophys Res Commun; 2011 Mar; 406(3):315-9. PubMed ID: 21329663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the sequence characteristics of miRNAs on multi-viral resistance mediated by single amiRNAs in transgenic tobacco.
    Song YZ; Han QJ; Jiang F; Sun RZ; Fan ZH; Zhu CX; Wen FJ
    Plant Physiol Biochem; 2014 Apr; 77():90-8. PubMed ID: 24561715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants.
    Eamens AL; Waterhouse PM
    Methods Mol Biol; 2011; 701():179-97. PubMed ID: 21181531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Customization of Artificial MicroRNA Design.
    Van Vu T; Do VN
    Methods Mol Biol; 2017; 1509():235-243. PubMed ID: 27826932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-efficiency gene silencing in plants using two-hit asymmetrical artificial MicroRNAs.
    Teotia S; Wang X; Zhou N; Wang M; Liu H; Qin J; Han D; Li C; Li CE; Pan S; Tang H; Kang W; Zhang Z; Tang X; Peng T; Tang G
    Plant Biotechnol J; 2023 Sep; 21(9):1799-1811. PubMed ID: 37392408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements.
    Zhang ZJ
    Planta; 2014 Jun; 239(6):1139-46. PubMed ID: 24643516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA silencing technology: A boon for crop improvement.
    Rajam MV
    J Biosci; 2020; 45():. PubMed ID: 33051412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis.
    McHale M; Eamens AL; Finnegan EJ; Waterhouse PM
    Plant J; 2013 Nov; 76(3):519-29. PubMed ID: 23937661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana.
    Eamens AL; McHale M; Waterhouse PM
    Methods Mol Biol; 2014; 1062():211-24. PubMed ID: 24057368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Artificial MicroRNAs for Multiplex Gene Silencing and Simplified Transgenic Screen.
    Zhang N; Zhang D; Chen SL; Gong BQ; Guo Y; Xu L; Zhang XN; Li JF
    Plant Physiol; 2018 Nov; 178(3):989-1001. PubMed ID: 30291175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida).
    Guo Y; Han Y; Ma J; Wang H; Sang X; Li M
    PLoS One; 2014; 9(6):e98783. PubMed ID: 24897430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-generated artificial small RNAs mediated aphid resistance.
    Guo H; Song X; Wang G; Yang K; Wang Y; Niu L; Chen X; Fang R
    PLoS One; 2014; 9(5):e97410. PubMed ID: 24819752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial microRNA guide strand selection from duplexes with no mismatches shows a purine-rich preference for virus- and non-virus-based expression vectors in plants.
    Kuo YW; Falk BW
    Plant Biotechnol J; 2022 Jun; 20(6):1069-1084. PubMed ID: 35113475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial microRNAs for plant virus resistance.
    Qu J; Ye J; Fang R
    Methods Mol Biol; 2012; 894():209-22. PubMed ID: 22678582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.
    Bhagwat B; Chi M; Han D; Tang H; Tang G; Xiang Y
    Methods Mol Biol; 2016; 1405():149-62. PubMed ID: 26843173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are small RNAs a big help to plants?
    Mao Y; Xue X; Chen X
    Sci China C Life Sci; 2009 Mar; 52(3):212-23. PubMed ID: 19294346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaffolds for Artificial miRNA Expression in Animal Cells.
    Calloni R; Bonatto D
    Hum Gene Ther Methods; 2015 Oct; 26(5):162-74. PubMed ID: 26406928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.