BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25022916)

  • 21. Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides.
    Gall A; Cogdell RJ; Robert B
    Biochemistry; 2003 Jun; 42(23):7252-8. PubMed ID: 12795622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective oxidation of B800 bacteriochlorophyll a in photosynthetic light-harvesting protein LH2.
    Saga Y; Kawano K; Otsuka Y; Imanishi M; Kimura Y; Matsui S; Asakawa H
    Sci Rep; 2019 Mar; 9(1):3636. PubMed ID: 30842503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides.
    Chenchiliyan M; Timpmann K; Jalviste E; Adams PG; Hunter CN; Freiberg A
    Biochim Biophys Acta; 2016 Jun; 1857(6):634-42. PubMed ID: 27013332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes.
    Comayras F; Jungas C; Lavergne J
    J Biol Chem; 2005 Mar; 280(12):11203-13. PubMed ID: 15632164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous Production of the Photosynthetic Reaction Center and Light Harvesting 1 Complexes of the Thermophile Thermochromatium tepidum in the Mesophile Rhodobacter sphaeroides and Thermal Stability of a Hybrid Core Complex.
    Jun D; Huang V; Beatty JT
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28821545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides.
    Jungas C; Ranck JL; Rigaud JL; Joliot P; Verméglio A
    EMBO J; 1999 Feb; 18(3):534-42. PubMed ID: 9927413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production.
    Aklujkar M; Prince RC; Beatty JT
    Arch Biochem Biophys; 2005 May; 437(2):186-98. PubMed ID: 15850558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing structure-function relationships in early events in photosynthesis using a chimeric photocomplex.
    Nagashima KVP; Sasaki M; Hashimoto K; Takaichi S; Nagashima S; Yu LJ; Abe Y; Gotou K; Kawakami T; Takenouchi M; Shibuya Y; Yamaguchi A; Ohno T; Shen JR; Inoue K; Madigan MT; Kimura Y; Wang-Otomo ZY
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10906-10911. PubMed ID: 28935692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation, size estimates, and spectral heterogeneity of an oligomeric series of light-harvesting 1 complexes from Rhodobacter sphaeroides.
    Westerhuis WH; Sturgis JN; Ratcliffe EC; Hunter CN; Niederman RA
    Biochemistry; 2002 Jul; 41(27):8698-707. PubMed ID: 12093288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs.
    Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA
    Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides.
    Niedzwiedzki DM; Dilbeck PL; Tang Q; Martin EC; Bocian DF; Hunter CN; Holten D
    Photosynth Res; 2017 Mar; 131(3):291-304. PubMed ID: 27854005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The synthesis and assembly of functional high and low light LH2 antenna complexes from Rhodopseudomonas palustris in Rhodobacter sphaeroides.
    Fowler GJ; Hunter CN
    J Biol Chem; 1996 Jun; 271(23):13356-61. PubMed ID: 8662765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity.
    Woronowicz K; Olubanjo OB; Sung HC; Lamptey JL; Niederman RA
    Photosynth Res; 2012 Mar; 111(1-2):125-38. PubMed ID: 22396151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible Changes in the Structural Features of Photosynthetic Light-Harvesting Complex 2 by Removal and Reconstitution of B800 Bacteriochlorophyll a Pigments.
    Saga Y; Hirota K; Asakawa H; Takao K; Fukuma T
    Biochemistry; 2017 Jul; 56(27):3484-3491. PubMed ID: 28657308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carotenoid-to-bacteriochlorophyll singlet energy transfer in carotenoid-incorporated B850 light-harvesting complexes of Rhodobacter sphaeroides R-26.1.
    Frank HA; Farhoosh R; Aldema ML; DeCoster B; Christensen RL; Gebhard R; Lugtenburg J
    Photochem Photobiol; 1993 Jan; 57(1):49-55. PubMed ID: 8502725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides.
    Hunter CN; Tucker JD; Niederman RA
    Photochem Photobiol Sci; 2005 Dec; 4(12):1023-7. PubMed ID: 16307117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex.
    Francia F; Wang J; Venturoli G; Melandri BA; Barz WP; Oesterhelt D
    Biochemistry; 1999 May; 38(21):6834-45. PubMed ID: 10346905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilization of charge separation and cardiolipin confinement in antenna-reaction center complexes purified from Rhodobacter sphaeroides.
    Dezi M; Francia F; Mallardi A; Colafemmina G; Palazzo G; Venturoli G
    Biochim Biophys Acta; 2007 Aug; 1767(8):1041-56. PubMed ID: 17588528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment.
    Braun P; Olsen JD; Strohmann B; Hunter CN; Scheer H
    J Mol Biol; 2002 May; 318(4):1085-95. PubMed ID: 12054804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated alpha- and beta-polypeptides, bacteriochlorophyll alpha, and carotenoid.
    Davis CM; Bustamante PL; Loach PA
    J Biol Chem; 1995 Mar; 270(11):5793-804. PubMed ID: 7890709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.