These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25022916)

  • 41. Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll.
    Fiedor L; Leupold D; Teuchner K; Voigt B; Hunter CN; Scherz A; Scheer H
    Biochemistry; 2001 Mar; 40(12):3737-47. PubMed ID: 11297443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoprotection Mechanism of Light-Harvesting Antenna Complex from Purple Bacteria.
    Kosumi D; Horibe T; Sugisaki M; Cogdell RJ; Hashimoto H
    J Phys Chem B; 2016 Feb; 120(5):951-6. PubMed ID: 26800035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Confinement of cardiolipin and ubiquinone in reaction-center core complexes purified from the photosynthetic bacterium Rhodobacter sphaeroides.
    Dezi M; Francia F; Mallardi A; Palazzo G; Venturoli G
    Ital J Biochem; 2007 Dec; 56(4):259-64. PubMed ID: 19192623
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The C-terminus of PufX plays a key role in dimerisation and assembly of the reaction center light-harvesting 1 complex from Rhodobacter sphaeroides.
    Qian P; Martin EC; Ng IW; Hunter CN
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):795-803. PubMed ID: 28587931
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides.
    Qian P; Bullough PA; Hunter CN
    J Biol Chem; 2008 May; 283(20):14002-11. PubMed ID: 18326046
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.
    Dilbeck PL; Tang Q; Mothersole DJ; Martin EC; Hunter CN; Bocian DF; Holten D; Niedzwiedzki DM
    J Phys Chem B; 2016 Jun; 120(24):5429-43. PubMed ID: 27285777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides.
    Dahlberg PD; Ting PC; Massey SC; Martin EC; Hunter CN; Engel GS
    J Phys Chem A; 2016 Jun; 120(24):4124-30. PubMed ID: 27232937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light harvesting, energy transfer and electron cycling of a native photosynthetic membrane adsorbed onto a gold surface.
    Magis GJ; den Hollander MJ; Onderwaater WG; Olsen JD; Hunter CN; Aartsma TJ; Frese RN
    Biochim Biophys Acta; 2010 Mar; 1798(3):637-45. PubMed ID: 20036635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601.
    Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S
    Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The photosynthetic apparatus of Rhodobacter sphaeroides.
    Verméglio A; Joliot P
    Trends Microbiol; 1999 Nov; 7(11):435-40. PubMed ID: 10542422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides.
    Mothersole DJ; Jackson PJ; Vasilev C; Tucker JD; Brindley AA; Dickman MJ; Hunter CN
    Mol Microbiol; 2016 Jan; 99(2):307-27. PubMed ID: 26419219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Consequences for the organization of reaction center-light harvesting antenna 1 (LH1) core complexes of Rhodobacter sphaeroides arising from deletion of amino acid residues from the C terminus of the LH1 alpha polypeptide.
    McGlynn P; Westerhuis WH; Jones MR; Hunter CN
    J Biol Chem; 1996 Feb; 271(6):3285-92. PubMed ID: 8621732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides.
    Adams PG; Hunter CN
    Biochim Biophys Acta; 2012 Sep; 1817(9):1616-27. PubMed ID: 22659614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Triplet state energy transfer between the primary donor and the carotenoid in Rhodobacter sphaeroides R-26.1 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene.
    Frank HA; Chynwat V; Posteraro A; Hartwich G; Simonin I; Scheer H
    Photochem Photobiol; 1996 Nov; 64(5):823-31. PubMed ID: 8931381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection.
    Niedzwiedzki DM; Swainsbury DJK; Canniffe DP; Hunter CN; Hitchcock A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6502-6508. PubMed ID: 32139606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria.
    Bina D; Litvin R; Vacha F
    Photosynth Res; 2009 Feb; 99(2):115-25. PubMed ID: 19199074
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carotenoid to bacteriochlorophyll energy transfer in the RC-LH1-PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin.
    Šlouf V; Keşan G; Litvín R; Swainsbury DJK; Martin EC; Hunter CN; Polívka T
    Photosynth Res; 2018 Mar; 135(1-3):33-43. PubMed ID: 28528494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.
    Barz WP; Verméglio A; Francia F; Venturoli G; Melandri BA; Oesterhelt D
    Biochemistry; 1995 Nov; 34(46):15248-58. PubMed ID: 7578140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides.
    Pasternak C; Haberzettl K; Klug G
    J Bacteriol; 1999 Jan; 181(1):100-6. PubMed ID: 9864318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.