These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 25023048)

  • 61. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel.
    Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R
    Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anaerobic Corrosion of 304 Stainless Steel Caused by the
    Jia R; Yang D; Xu D; Gu T
    Front Microbiol; 2017; 8():2335. PubMed ID: 29230206
    [No Abstract]   [Full Text] [Related]  

  • 63. Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution.
    Yu S; Lou Y; Zhang D; Zhou E; Li Z; Du C; Qian H; Xu D; Gu T
    Bioelectrochemistry; 2020 Jun; 133():107477. PubMed ID: 32035394
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Community succession in an anaerobic long-chain paraffin-degrading consortium and impact on chemical and electrical microbially influenced iron corrosion.
    Liang R; Davidova I; Hirano SI; Duncan KE; Suflita JM
    FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31281924
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions.
    Miller RB; Lawson K; Sadek A; Monty CN; Senko JM
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654179
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Environmental scanning electron microscope (ESEM) evaluation of crystal and plaque formation associated with biocorrosion.
    Geiger SL; Ross TJ; Barton LL
    Microsc Res Tech; 1993 Aug; 25(5-6):429-33. PubMed ID: 8400436
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments.
    Clark ME; Edelmann RE; Duley ML; Wall JD; Fields MW
    Environ Microbiol; 2007 Nov; 9(11):2844-54. PubMed ID: 17922767
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21.
    Xu L; Guan F; Ma Y; Zhang R; Zhang Y; Zhai X; Dong X; Wang Y; Duan J; Hou B
    Bioelectrochemistry; 2022 Jun; 145():108048. PubMed ID: 35093618
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extracellular Electron Transfer by
    Chugh B; Sheetal ; Singh M; Thakur S; Pani B; Singh AK; Saji VS
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1049-1059. PubMed ID: 35199512
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena.
    Boudaud N; Coton M; Coton E; Pineau S; Travert J; Amiel C
    J Appl Microbiol; 2010 Jul; 109(1):166-79. PubMed ID: 20059620
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria.
    Liu H; Cheng YF
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110899. PubMed ID: 32120127
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Direct cathodic electron uptake coupled to sulfate reduction by Desulfovibrio ferrophilus IS5 biofilms.
    McCully AL; Spormann AM
    Environ Microbiol; 2020 Nov; 22(11):4794-4807. PubMed ID: 32939950
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa.
    Qian HC; Chang WW; Liu WL; Cui TY; Li Z; Guo DW; Kwok CT; Tam LM; Zhang DW
    Bioelectrochemistry; 2022 Feb; 143():107953. PubMed ID: 34583211
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Extracellular electron transfer routes in microbiologically influenced corrosion of X80 steel by Bacillus licheniformis.
    Li J; Du C; Liu Z; Li X
    Bioelectrochemistry; 2022 Jun; 145():108074. PubMed ID: 35114477
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Impact of commonly used Ag-Cu ion doses on Desulfovibrio sp.: growth and microbiologically induced corrosion against stainless steel.
    Arkan-Ozdemir S; Cansever N; Ilhan-Sungur E
    Water Sci Technol; 2020 Sep; 82(5):940-953. PubMed ID: 33031072
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigation of mixed species biofilm on corrosion of X65 steel in seawater environment.
    Lv M; Du M; Li Z
    Bioelectrochemistry; 2022 Feb; 143():107951. PubMed ID: 34601262
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers.
    Permeh S; Lau K; Duncan M
    Bioelectrochemistry; 2021 Dec; 142():107922. PubMed ID: 34392136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.