These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 25023089)
1. The comprehensive transcriptional analysis in Caenorhabditis elegans by integrating ChIP-seq and gene expression data. He K; Shao J; Zhao Z; Liu D Genet Res (Camb); 2014; 96():e005. PubMed ID: 25023089 [TBL] [Abstract][Full Text] [Related]
2. Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans. Niu W; Lu ZJ; Zhong M; Sarov M; Murray JI; Brdlik CM; Janette J; Chen C; Alves P; Preston E; Slightham C; Jiang L; Hyman AA; Kim SK; Waterston RH; Gerstein M; Snyder M; Reinke V Genome Res; 2011 Feb; 21(2):245-54. PubMed ID: 21177963 [TBL] [Abstract][Full Text] [Related]
3. Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions. Van Nostrand EL; Kim SK Genome Res; 2013 Jun; 23(6):941-53. PubMed ID: 23531767 [TBL] [Abstract][Full Text] [Related]
4. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans. Brdlik CM; Niu W; Snyder M Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441 [TBL] [Abstract][Full Text] [Related]
5. A widespread distribution of genomic CeMyoD binding sites revealed and cross validated by ChIP-Chip and ChIP-Seq techniques. Lei H; Fukushige T; Niu W; Sarov M; Reinke V; Krause M PLoS One; 2010 Dec; 5(12):e15898. PubMed ID: 21209968 [TBL] [Abstract][Full Text] [Related]
6. Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system. Amon S; Gupta BP Dev Biol; 2017 Apr; 424(1):90-103. PubMed ID: 28215941 [TBL] [Abstract][Full Text] [Related]
7. The function and regulation of the GATA factor ELT-2 in the C. elegans endoderm. Wiesenfahrt T; Berg JY; Osborne Nishimura E; Robinson AG; Goszczynski B; Lieb JD; McGhee JD Development; 2016 Feb; 143(3):483-91. PubMed ID: 26700680 [TBL] [Abstract][Full Text] [Related]
8. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Mundade R; Ozer HG; Wei H; Prabhu L; Lu T Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472 [TBL] [Abstract][Full Text] [Related]
9. The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding. Hristova M; Birse D; Hong Y; Ambros V Mol Cell Biol; 2005 Dec; 25(24):11059-72. PubMed ID: 16314527 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide discovery of active regulatory elements and transcription factor footprints in Ho MCW; Quintero-Cadena P; Sternberg PW Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739 [TBL] [Abstract][Full Text] [Related]
12. Transcription factor redundancy and tissue-specific regulation: evidence from functional and physical network connectivity. Kuntz SG; Williams BA; Sternberg PW; Wold BJ Genome Res; 2012 Oct; 22(10):1907-19. PubMed ID: 22730465 [TBL] [Abstract][Full Text] [Related]
13. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking. Wu G; Ji H BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851 [TBL] [Abstract][Full Text] [Related]
14. A gene-centered C. elegans protein-DNA interaction network provides a framework for functional predictions. Fuxman Bass JI; Pons C; Kozlowski L; Reece-Hoyes JS; Shrestha S; Holdorf AD; Mori A; Myers CL; Walhout AJ Mol Syst Biol; 2016 Oct; 12(10):884. PubMed ID: 27777270 [TBL] [Abstract][Full Text] [Related]
15. The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans. Fukushige T; Goszczynski B; Tian H; McGhee JD Genetics; 2003 Oct; 165(2):575-88. PubMed ID: 14573471 [TBL] [Abstract][Full Text] [Related]
16. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. Cheng C; Yan KK; Hwang W; Qian J; Bhardwaj N; Rozowsky J; Lu ZJ; Niu W; Alves P; Kato M; Snyder M; Gerstein M PLoS Comput Biol; 2011 Nov; 7(11):e1002190. PubMed ID: 22125477 [TBL] [Abstract][Full Text] [Related]
17. Time-course swRNA-seq uncovers a hierarchical gene regulatory network in controlling the response-repair-remodeling after wounding. Yu X; Zhou J; Ye W; Xu J; Li R; Huang L; Chai Y; Wen M; Xu S; Zhou Y Commun Biol; 2024 Jun; 7(1):694. PubMed ID: 38844830 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq). Zhu JY; Sun Y; Wang ZY Methods Mol Biol; 2012; 876():173-88. PubMed ID: 22576095 [TBL] [Abstract][Full Text] [Related]
19. ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks. Pavesi G Adv Biochem Eng Biotechnol; 2017; 160():1-14. PubMed ID: 28070596 [TBL] [Abstract][Full Text] [Related]
20. Collaborative regulation of development but independent control of metabolism by two epidermis-specific transcription factors in Caenorhabditis elegans. Shao J; He K; Wang H; Ho WS; Ren X; An X; Wong MK; Yan B; Xie D; Stamatoyannopoulos J; Zhao Z J Biol Chem; 2013 Nov; 288(46):33411-26. PubMed ID: 24097988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]