BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 25023312)

  • 21. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optogenetics and Optical Tools in Automated Patch Clamping.
    Boddum K; Skafte-Pedersen P; Rolland JF; Wilson S
    Methods Mol Biol; 2021; 2188():311-330. PubMed ID: 33119859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in cellular optogenetics for photomedicine.
    Chen B; Cui M; Wang Y; Shi P; Wang H; Wang F
    Adv Drug Deliv Rev; 2022 Sep; 188():114457. PubMed ID: 35843507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors.
    Avaliani N; Sørensen AT; Ledri M; Bengzon J; Koch P; Brüstle O; Deisseroth K; Andersson M; Kokaia M
    Stem Cells; 2014 Dec; 32(12):3088-98. PubMed ID: 25183299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing Synaptic Signaling with Optogenetic Stimulation and Genetically Encoded Calcium Reporters.
    Borja GB; Shroff H; Upadhyay H; Liu PW; Baru V; Cheng YC; McManus OB; Williams LA; Dempsey GT; Werley CA
    Methods Mol Biol; 2021; 2191():109-134. PubMed ID: 32865742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector.
    Sakai S; Ueno K; Ishizuka T; Yawo H
    Neurosci Res; 2013 Jan; 75(1):59-64. PubMed ID: 22469653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electromechanical Assessment of Optogenetically Modulated Cardiomyocyte Activity.
    Kopton RA; Buchmann C; Moss R; Kohl P; Peyronnet R; Schneider-Warme F
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blind patch clamp recordings in embryonic and adult mammalian brain slices.
    Castañeda-Castellanos DR; Flint AC; Kriegstein AR
    Nat Protoc; 2006; 1(2):532-42. PubMed ID: 17406279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions.
    Ganjawala TH; Lu Q; Fenner MD; Abrams GW; Pan ZH
    Mol Ther; 2019 Jun; 27(6):1195-1205. PubMed ID: 31010741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings.
    Qi G; Radnikow G; Feldmeyer D
    J Vis Exp; 2015 Jan; (95):52358. PubMed ID: 25650985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ex Vivo Optogenetic Dissection of Fear Circuits in Brain Slices.
    Bosch D; Asede D; Ehrlich I
    J Vis Exp; 2016 Apr; (110):e53628. PubMed ID: 27077317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local application of drugs to study nicotinic acetylcholine receptor function in mouse brain slices.
    Engle SE; Broderick HJ; Drenan RM
    J Vis Exp; 2012 Oct; (68):e50034. PubMed ID: 23128482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whole-cell patch-clamp recordings on spinal cord slices.
    Deng P; Xu ZC
    Methods Mol Biol; 2012; 851():65-72. PubMed ID: 22351082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurophysiological Assessment of Huntington's Disease Model Mice.
    Donzis EJ; Holley SM; Cepeda C; Levine MS
    Methods Mol Biol; 2018; 1780():163-177. PubMed ID: 29856019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology.
    Fernández MC; Kopton RA; Simon-Chica A; Madl J; Hilgendorf I; Zgierski-Johnston CM; Schneider-Warme F
    Methods Mol Biol; 2021; 2191():287-307. PubMed ID: 32865751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological Characterization of Microbial Rhodopsins by Patch-Clamp Experiments.
    Mager T
    Methods Mol Biol; 2022; 2501():277-288. PubMed ID: 35857233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of Acute Spinal Cord Slices for Whole-cell Patch-clamp Recording in Substantia Gelatinosa Neurons.
    Zhu M; Zhang D; Peng S; Liu N; Wu J; Kuang H; Liu T
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of channelrhodopsin for activation of CNS neurons.
    Britt JP; McDevitt RA; Bonci A
    Curr Protoc Neurosci; 2012; Chapter 2():Unit2.16. PubMed ID: 23042500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes.
    Fuzik J; Zeisel A; Máté Z; Calvigioni D; Yanagawa Y; Szabó G; Linnarsson S; Harkany T
    Nat Biotechnol; 2016 Feb; 34(2):175-183. PubMed ID: 26689544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-Channel Photostimulation for Independent Excitation of Two Populations.
    Hooks BM
    Curr Protoc Neurosci; 2018 Oct; 85(1):e52. PubMed ID: 30204300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.