These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25023316)

  • 1. Pressure-polished borosilicate pipettes are "universal sealer" yielding low access resistance and efficient intracellular perfusion.
    Aquila M; Benedusi M; Fasoli A; Rispoli G
    Methods Mol Biol; 2014; 1183():279-89. PubMed ID: 25023316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pressure-polishing set-up to fabricate patch pipettes that seal on virtually any membrane, yielding low access resistance and efficient intracellular perfusion.
    Benedusi M; Aquila M; Milani A; Rispoli G
    Eur Biophys J; 2011 Nov; 40(11):1215-23. PubMed ID: 21761372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure polishing: a method for re-shaping patch pipettes during fire polishing.
    Goodman MB; Lockery SR
    J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-polishing pipettes for improved patch-clamp recording.
    Johnson BE; Brown AL; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel holder allowing internal perfusion of patch-clamp pipettes.
    Lapointe JY; Szabo G
    Pflugers Arch; 1987 Sep; 410(1-2):212-6. PubMed ID: 3500457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A device for automated control of pipette internal pressure for patch-clamp recording.
    Heyward PM; Shipley MT
    J Neurosci Methods; 2003 Feb; 123(1):109-15. PubMed ID: 12581854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Zebrafish Green Cone Photoresponse Recorded with Pressure-Polished Patch Pipettes, Yielding Efficient Intracellular Dialysis.
    Aquila M; Benedusi M; Fasoli A; Rispoli G
    PLoS One; 2015; 10(10):e0141727. PubMed ID: 26513584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing cytosol dilution in whole-cell patch-clamp experiments.
    Inayat S; Pinto LH; Troy JB
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2042-51. PubMed ID: 23446027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel automated ion channel recording method using "inside-out" whole-cell membranes.
    Vasilyev DV; Merrill TL; Bowlby MR
    J Biomol Screen; 2005 Dec; 10(8):806-13. PubMed ID: 16234349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae.
    Bertl A; Bihler H; Kettner C; Slayman CL
    Pflugers Arch; 1998 Nov; 436(6):999-1013. PubMed ID: 9799419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of a commercial perfusion system for use in ultrafast solution exchange during patch clamp recording.
    Hinkle DJ; Bianchi MT; Macdonald RL
    Biotechniques; 2003 Sep; 35(3):472-4, 476. PubMed ID: 14513550
    [No Abstract]   [Full Text] [Related]  

  • 12. Dry beveling micropipettes using a computer hard drive.
    Canfield JG
    J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making patch-pipettes and sharp electrodes with a programmable puller.
    Brown AL; Johnson BE; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flip the tip: an automated, high quality, cost-effective patch clamp screen.
    Lepple-Wienhues A; Ferlinz K; Seeger A; Schäfer A
    Recept Channels; 2003; 9(1):13-7. PubMed ID: 12825294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mitochondria-rich cells for passive chloride transport, with a discussion of Ussing's contribution to our understanding of shunt pathways in epithelia.
    Larsen EH; Kristensen P; Nedergaard S; Willumsen NJ
    J Membr Biol; 2001 Dec; 184(3):247-54. PubMed ID: 11891549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flip-the-tip: automated patch clamping based on glass electrodes.
    Fejtl M; Czubayko U; Hümmer A; Krauter T; Lepple-Wienhues A
    Methods Mol Biol; 2007; 403():71-85. PubMed ID: 18827988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel way to go whole-cell in patch-clamp experiments.
    Inayat S; Zhao Y; Cantrell DR; Dikin D; Pinto LH; Troy JB
    IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20595080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new technique for multiple re-use of planar patch clamp chips.
    Kao L; Abuladze N; Shao XM; McKeegan K; Kurtz I
    J Neurosci Methods; 2012 Jul; 208(2):205-10. PubMed ID: 22609774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Intracellular dialysis with a microcatheter inserted into the patch-clamp pipette].
    Li GH; Li ZW; Wang SD; Wei JB; Zheng XK
    Sheng Li Xue Bao; 2002 Apr; 54(2):179-82. PubMed ID: 11973602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated giga-seal formation with a just originated glass surface.
    Böhle T; Benndorf K
    Pflugers Arch; 1994 Jul; 427(5-6):487-91. PubMed ID: 7971147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.