These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 2502389)
1. Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy. Vergnes M; Marescaux C; Lannes B; Depaulis A; Micheletti G; Warter JM Epilepsy Res; 1989; 4(1):8-13. PubMed ID: 2502389 [TBL] [Abstract][Full Text] [Related]
2. Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy. Seidenbecher T; Pape HC Eur J Neurosci; 2001 Apr; 13(8):1537-46. PubMed ID: 11328348 [TBL] [Abstract][Full Text] [Related]
3. Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Vergnes M; Marescaux C; Depaulis A; Micheletti G; Warter JM Exp Neurol; 1987 Apr; 96(1):127-36. PubMed ID: 3104077 [TBL] [Abstract][Full Text] [Related]
4. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles. Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679 [TBL] [Abstract][Full Text] [Related]
5. Genetic absence epilepsy in rats from Strasbourg--a review. Marescaux C; Vergnes M; Depaulis A J Neural Transm Suppl; 1992; 35():37-69. PubMed ID: 1512594 [TBL] [Abstract][Full Text] [Related]
6. Cortical and thalamic lesions in rats with genetic absence epilepsy. Vergnes M; Marescaux C J Neural Transm Suppl; 1992; 35():71-83. PubMed ID: 1512595 [TBL] [Abstract][Full Text] [Related]
7. Onset and propagation of spike and slow wave discharges in human absence epilepsy: A MEG study. Westmijse I; Ossenblok P; Gunning B; van Luijtelaar G Epilepsia; 2009 Dec; 50(12):2538-48. PubMed ID: 19519798 [TBL] [Abstract][Full Text] [Related]
8. Relationship between spike-wave discharges and vigilance levels in rats with spontaneous petit mal-like epilepsy. Lannes B; Micheletti G; Vergnes M; Marescaux C; Depaulis A; Warter JM Neurosci Lett; 1988 Nov; 94(1-2):187-91. PubMed ID: 3149401 [TBL] [Abstract][Full Text] [Related]
9. Nucleus basalis lesions suppress spike and wave discharges in rats with spontaneous absence-epilepsy. Danober L; Vergnes M; Depaulis A; Marescaux C Neuroscience; 1994 Apr; 59(3):531-9. PubMed ID: 8008207 [TBL] [Abstract][Full Text] [Related]
10. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats. Sitnikova E; van Luijtelaar G Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621 [TBL] [Abstract][Full Text] [Related]
11. Relations between cortical and thalamic cellular activities during absence seizures in rats. Seidenbecher T; Staak R; Pape HC Eur J Neurosci; 1998 Mar; 10(3):1103-12. PubMed ID: 9753178 [TBL] [Abstract][Full Text] [Related]
12. Cortical and thalamic coherence during spike-wave seizures in WAG/Rij rats. Sitnikova E; van Luijtelaar G Epilepsy Res; 2006 Oct; 71(2-3):159-80. PubMed ID: 16879948 [TBL] [Abstract][Full Text] [Related]
13. Increased gamma-hydroxybutyric acid receptors in thalamus of a genetic animal model of petit mal epilepsy. Snead OC; Hechler V; Vergnes M; Marescaux C; Maitre M Epilepsy Res; 1990 Nov; 7(2):121-8. PubMed ID: 1963140 [TBL] [Abstract][Full Text] [Related]
14. On the putative contribution of GABA(B) receptors to the electrical events occurring during spontaneous spike and wave discharges. Charpier S; Leresche N; Deniau JM; Mahon S; Hughes SW; Crunelli V Neuropharmacology; 1999 Nov; 38(11):1699-706. PubMed ID: 10587086 [TBL] [Abstract][Full Text] [Related]
15. Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges. Slaght SJ; Leresche N; Deniau JM; Crunelli V; Charpier S J Neurosci; 2002 Mar; 22(6):2323-34. PubMed ID: 11896171 [TBL] [Abstract][Full Text] [Related]
16. On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy. Slaght SJ; Paz T; Chavez M; Deniau JM; Mahon S; Charpier S J Neurosci; 2004 Jul; 24(30):6816-25. PubMed ID: 15282287 [TBL] [Abstract][Full Text] [Related]
17. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Pinault D; Vergnes M; Marescaux C Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311 [TBL] [Abstract][Full Text] [Related]
18. The role of the corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized penicillin epilepsy. Musgrave J; Gloor P Epilepsia; 1980 Aug; 21(4):369-78. PubMed ID: 7398604 [TBL] [Abstract][Full Text] [Related]
19. Neuropeptide Y affects thalamic reticular nucleus neuronal firing and network synchronization associated with suppression of spike-wave discharges. Ali I; Gandrathi A; Zheng T; Morris MJ; O'Brien TJ; French C Epilepsia; 2018 Jul; 59(7):1444-1454. PubMed ID: 29923603 [TBL] [Abstract][Full Text] [Related]
20. Spike-wave discharges in Sprague-Dawley rats reflect precise intra- and interhemispheric synchronization of somatosensory cortex. Taylor JA; Smith ZZ; Barth DS J Neurophysiol; 2022 Nov; 128(5):1152-1167. PubMed ID: 36169203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]