These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25023946)

  • 1. Latent Tuberculosis: Models, Computational Efforts and the Pathogen's Regulatory Mechanisms during Dormancy.
    Magombedze G; Dowdy D; Mulder N
    Front Bioeng Biotechnol; 2013; 1():4. PubMed ID: 25023946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical representation of the development of Mycobacterium tuberculosis active, latent and dormant stages.
    Magombedze G; Mulder N
    J Theor Biol; 2012 Jan; 292():44-59. PubMed ID: 21968442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen.
    Deb C; Lee CM; Dubey VS; Daniel J; Abomoelak B; Sirakova TD; Pawar S; Rogers L; Kolattukudy PE
    PLoS One; 2009 Jun; 4(6):e6077. PubMed ID: 19562030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Modulates the Effectiveness of Granuloma Mediated Host Response to Mycobacterium tuberculosis: A Multiscale Computational Biology Approach.
    Sershen CL; Plimpton SJ; May EE
    Front Cell Infect Microbiol; 2016; 6():6. PubMed ID: 26913242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach.
    Bose T; Das C; Dutta A; Mahamkali V; Sadhu S; Mande SS
    BMC Genomics; 2018 Jul; 19(1):555. PubMed ID: 30053801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pleiotropic transcriptional response of Mycobacterium tuberculosis to vitamin C is robust and overlaps with the bacterial response to multiple intracellular stresses.
    Sikri K; Batra SD; Nandi M; Kumari P; Taneja NK; Tyagi JS
    Microbiology (Reading); 2015 Apr; 161(Pt 4):739-53. PubMed ID: 25645949
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Salina EG; Makarov V
    Microorganisms; 2022 Nov; 10(12):. PubMed ID: 36557586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intricate Genetic Programs Controlling Dormancy in Mycobacterium tuberculosis.
    Peterson EJR; Abidi AA; Arrieta-Ortiz ML; Aguilar B; Yurkovich JT; Kaur A; Pan M; Srinivas V; Shmulevich I; Baliga NS
    Cell Rep; 2020 Apr; 31(4):107577. PubMed ID: 32348771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding TB latency using computational and dynamic modelling procedures.
    Magombedze G; Mulder N
    Infect Genet Evol; 2013 Jan; 13():267-83. PubMed ID: 23146828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of Mycobacterium tuberculosis dormancy in bacterial cultures.
    Batyrshina YR; Schwartz YS
    Tuberculosis (Edinb); 2019 Jul; 117():7-17. PubMed ID: 31378272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis.
    Peddireddy V; Doddam SN; Ahmed N
    Front Immunol; 2017; 8():84. PubMed ID: 28261197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic factors affecting storage and utilization of lipids during dormancy in
    Sturm A; Sun P; Avila-Pacheco J; Clatworthy AE; Bloom-Ackermann Z; Wuo MG; Gomez JE; Jin S; Clish CB; Kiessling LL; Hung DT
    mBio; 2024 Feb; 15(2):e0320823. PubMed ID: 38236034
    [No Abstract]   [Full Text] [Related]  

  • 14. Application of model systems to study adaptive responses of Mycobacterium tuberculosis during infection and disease.
    Gordhan BG; Peters J; Kana BD
    Adv Appl Microbiol; 2019; 108():115-161. PubMed ID: 31495404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C.
    Taneja NK; Dhingra S; Mittal A; Naresh M; Tyagi JS
    PLoS One; 2010 May; 5(5):e10860. PubMed ID: 20523728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypobiosis of Mycobacteria: Biochemical Aspects.
    Shleeva MO; Kaprelyants AS
    Biochemistry (Mosc); 2023 Jan; 88(Suppl 1):S52-S74. PubMed ID: 37069114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis.
    Ehlers S
    Infection; 2009 Apr; 37(2):87-95. PubMed ID: 19308316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality?
    Gupta VK; Kumar MM; Singh D; Bisht D; Sharma S
    Infect Dis (Lond); 2018 Feb; 50(2):81-94. PubMed ID: 28933243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C.
    Nandi M; Sikri K; Chaudhary N; Mande SC; Sharma RD; Tyagi JS
    BMC Genomics; 2019 Nov; 20(1):887. PubMed ID: 31752669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of
    Khan MZ; Nandicoori VK
    Antimicrob Agents Chemother; 2021 Mar; 65(4):. PubMed ID: 33468473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.