These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25023970)

  • 1. A paper-based lateral flow assay for morphine.
    Teerinen T; Lappalainen T; Erho T
    Anal Bioanal Chem; 2014 Sep; 406(24):5955-65. PubMed ID: 25023970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect competitive assays on DVD for direct multiplex detection of drugs of abuse in oral fluids.
    Zhang L; Li X; Li Y; Shi X; Yu HZ
    Anal Chem; 2015 Feb; 87(3):1896-902. PubMed ID: 25540088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An up-converting phosphor technology-based lateral flow assay for point-of-collection detection of morphine and methamphetamine in saliva.
    Hu Q; Wei Q; Zhang P; Li S; Xue L; Yang R; Wang C; Zhou L
    Analyst; 2018 Sep; 143(19):4646-4654. PubMed ID: 30168551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-based lateral flow assay using rhodamine B-loaded polymersomes for the colorimetric determination of synthetic cannabinoids in saliva.
    Moulahoum H; Ghorbanizamani F; Timur S
    Mikrochim Acta; 2021 Nov; 188(11):402. PubMed ID: 34731326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a nanogold-based immunochromatographic assay for detection of morphine in urine using the Amor-HK16 monoclonal antibody.
    Dehghannezhad A; Paknejad M; Rasaee MJ; Omidfar K; Seyyed Ebrahimi SS; Ghahremani H
    Hybridoma (Larchmt); 2012 Dec; 31(6):411-6. PubMed ID: 23244319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples.
    Gandhi S; Caplash N; Sharma P; Raman Suri C
    Biosens Bioelectron; 2009 Oct; 25(2):502-5. PubMed ID: 19699078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The recovery of illicit drugs from oral fluid sampling devices.
    Dickson S; Park A; Nolan S; Kenworthy S; Nicholson C; Midgley J; Pinfold R; Hampton S
    Forensic Sci Int; 2007 Jan; 165(1):78-84. PubMed ID: 16621382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of on-site oral fluid screening using Drugwipe-5(+), RapidSTAT and Drug Test 5000 for the detection of drugs of abuse in drivers.
    Wille SM; Samyn N; Ramírez-Fernández Mdel M; De Boeck G
    Forensic Sci Int; 2010 May; 198(1-3):2-6. PubMed ID: 19913376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical High-Performance Lateral Flow Assay Based on Autonomous Microfluidic Replacement on a Film.
    Fuchiwaki Y; Goya K; Tanaka M
    Anal Sci; 2018; 34(1):57-63. PubMed ID: 29321459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper.
    Costa MN; Veigas B; Jacob JM; Santos DS; Gomes J; Baptista PV; Martins R; Inácio J; Fortunato E
    Nanotechnology; 2014 Mar; 25(9):094006. PubMed ID: 24521980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A field test of substance use screening devices as part of routine drunk-driving spot detection operating procedures in South Africa.
    Matzopoulos R; Lasarow A; Bowman B
    Accid Anal Prev; 2013 Oct; 59():118-24. PubMed ID: 23770390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Pluronic F127 on the distribution and functionality of inkjet-printed biomolecules in porous nitrocellulose substrates.
    Mujawar LH; van Amerongen A; Norde W
    Talanta; 2015 Jan; 131():541-7. PubMed ID: 25281138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.
    Carrio A; Sampedro C; Sanchez-Lopez JL; Pimienta M; Campoy P
    Sensors (Basel); 2015 Nov; 15(11):29569-93. PubMed ID: 26610513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of gas chromatography/mass spectrometry with positive chemical ionization for the determination of opiates in human oral fluid.
    Cámpora P; Bermejo AM; Tabernero MJ; Fernández P
    Rapid Commun Mass Spectrom; 2006; 20(8):1288-92. PubMed ID: 16548052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an EMIT® screening method to detect 6-acetylmorphine in oral fluid.
    Sarris G; Borg D; Liao S; Stripp R
    J Anal Toxicol; 2014 Oct; 38(8):605-9. PubMed ID: 25217554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stacking flow immunoassay for the detection of dengue-specific immunoglobulins in salivary fluid.
    Zhang Y; Bai J; Ying JY
    Lab Chip; 2015 Mar; 15(6):1465-71. PubMed ID: 25608951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step homogeneous immunoassay for small analytes.
    Pulli T; Höyhtyä M; Söderlund H; Takkinen K
    Anal Chem; 2005 Apr; 77(8):2637-42. PubMed ID: 15828804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse.
    Guteneva NV; Znoyko SL; Orlov AV; Nikitin MP; Nikitin PI
    Mikrochim Acta; 2019 Aug; 186(9):621. PubMed ID: 31410571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet-printed paperfluidic immuno-chemical sensing device.
    Abe K; Kotera K; Suzuki K; Citterio D
    Anal Bioanal Chem; 2010 Sep; 398(2):885-93. PubMed ID: 20652543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.