These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25024162)

  • 1. Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction.
    Gomes AL; Abeel T; Peterson M; Azizi E; Lyubetskaya A; Carvalho L; Galagan J
    Genome Res; 2014 Oct; 24(10):1686-97. PubMed ID: 25024162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CMT: a constrained multi-level thresholding approach for ChIP-Seq data analysis.
    Rezaeian I; Rueda L
    PLoS One; 2014; 9(4):e93873. PubMed ID: 24736605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data.
    Chung D; Park D; Myers K; Grass J; Kiley P; Landick R; Keleş S
    PLoS Comput Biol; 2013; 9(10):e1003246. PubMed ID: 24146601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data.
    Qin ZS; Yu J; Shen J; Maher CA; Hu M; Kalyana-Sundaram S; Yu J; Chinnaiyan AM
    BMC Bioinformatics; 2010 Jul; 11():369. PubMed ID: 20598134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterising ChIP-seq binding patterns by model-based peak shape deconvolution.
    Mendoza-Parra MA; Nowicka M; Van Gool W; Gronemeyer H
    BMC Genomics; 2013 Nov; 14(1):834. PubMed ID: 24279297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
    Kulakovskiy I; Levitsky V; Oshchepkov D; Bryzgalov L; Vorontsov I; Makeev V
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340004. PubMed ID: 23427986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
    Jothi R; Cuddapah S; Barski A; Cui K; Zhao K
    Nucleic Acids Res; 2008 Sep; 36(16):5221-31. PubMed ID: 18684996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct ChIP-Seq significance analysis improves target prediction.
    Bansal M; Mendiratta G; Anand S; Kushwaha R; Kim R; Kustagi M; Iyer A; Chaganti RS; Califano A; Sumazin P
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S4. PubMed ID: 26040656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.
    Gomes AL; Wang HH
    PLoS Comput Biol; 2016 Apr; 12(4):e1004891. PubMed ID: 27104615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and analysis of ChIP-seq experiments for DNA-binding proteins.
    Kharchenko PV; Tolstorukov MY; Park PJ
    Nat Biotechnol; 2008 Dec; 26(12):1351-9. PubMed ID: 19029915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-based peak identification for ChIP-Seq.
    Hower V; Evans SN; Pachter L
    BMC Bioinformatics; 2011 Jan; 12():15. PubMed ID: 21226895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data.
    Wang C; Xu J; Zhang D; Wilson ZA; Zhang D
    BMC Bioinformatics; 2010 Feb; 11():81. PubMed ID: 20144209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QChIPat: a quantitative method to identify distinct binding patterns for two biological ChIP-seq samples in different experimental conditions.
    Liu B; Yi J; Sv A; Lan X; Ma Y; Huang TH; Leone G; Jin VX
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S3. PubMed ID: 24564479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WACS: improving ChIP-seq peak calling by optimally weighting controls.
    Awdeh A; Turcotte M; Perkins TJ
    BMC Bioinformatics; 2021 Feb; 22(1):69. PubMed ID: 33588754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.