These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25024266)

  • 1. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR.
    Cui G; Rahman KS; Infield DT; Kuang C; Prince CZ; McCarty NA
    J Gen Physiol; 2014 Aug; 144(2):159-79. PubMed ID: 25024266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator.
    Infield DT; Cui G; Kuang C; McCarty NA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(5):L403-14. PubMed ID: 26684250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore.
    Zhou JJ; Fatehi M; Linsdell P
    Pflugers Arch; 2008 Nov; 457(2):351-60. PubMed ID: 18449561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations at arginine 352 alter the pore architecture of CFTR.
    Cui G; Zhang ZR; O'Brien AR; Song B; McCarty NA
    J Membr Biol; 2008 Mar; 222(2):91-106. PubMed ID: 18421494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function.
    Cui G; Freeman CS; Knotts T; Prince CZ; Kuang C; McCarty NA
    J Biol Chem; 2013 Jul; 288(28):20758-67. PubMed ID: 23709221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity.
    Seibert FS; Linsdell P; Loo TW; Hanrahan JW; Clarke DM; Riordan JR
    J Biol Chem; 1996 Jun; 271(25):15139-45. PubMed ID: 8662892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR.
    Price MP; Ishihara H; Sheppard DN; Welsh MJ
    J Biol Chem; 1996 Oct; 271(41):25184-91. PubMed ID: 8810276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of CFTR channels by a peptide toxin of scorpion venom.
    Fuller MD; Zhang ZR; Cui G; Kubanek J; McCarty NA
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1328-41. PubMed ID: 15240343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.
    Linsdell P
    Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain.
    Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
    Jih KY; Li M; Hwang TC; Bompadre SG
    J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating.
    Fu J; Kirk KL
    J Biol Chem; 2001 Sep; 276(38):35660-8. PubMed ID: 11468285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects.
    Csanády L; Töröcsik B
    J Gen Physiol; 2014 Oct; 144(4):321-36. PubMed ID: 25267914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; Song B; McCarty NA
    J Biol Chem; 2005 Dec; 280(51):41997-2003. PubMed ID: 16227620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.