These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25024277)
1. Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress. Tada Y; Komatsubara S; Kurusu T AoB Plants; 2014 Jul; 6():. PubMed ID: 25024277 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Yamamoto N; Takano T; Tanaka K; Ishige T; Terashima S; Endo C; Kurusu T; Yajima S; Yano K; Tada Y Front Plant Sci; 2015; 6():241. PubMed ID: 25954282 [TBL] [Abstract][Full Text] [Related]
3. Na Kawakami Y; Imran S; Katsuhara M; Tada Y Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32847126 [TBL] [Abstract][Full Text] [Related]
4. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701 [TBL] [Abstract][Full Text] [Related]
5. Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein. Tada Y; Kawano R; Komatsubara S; Nishimura H; Katsuhara M; Ozaki S; Terashima S; Yano K; Endo C; Sato M; Okamoto M; Sawada Y; Hirai MY; Kurusu T Plant Sci; 2019 Jan; 278():54-63. PubMed ID: 30471729 [TBL] [Abstract][Full Text] [Related]
6. Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae). Bell HL; O'Leary JW Am J Bot; 2003 Oct; 90(10):1416-24. PubMed ID: 21659093 [TBL] [Abstract][Full Text] [Related]
7. Morphological and physiological responses to increased salinity in marsh and dune ecotypes ofSporobolus virginicus (L.) Kunth. Blits KC; Gallagher JL Oecologia; 1991 Sep; 87(3):330-335. PubMed ID: 28313258 [TBL] [Abstract][Full Text] [Related]
8. High-Affinity K+ Transporters from a Halophyte, Sporobolus virginicus, Mediate Both K+ and Na+ Transport in Transgenic Arabidopsis, X. laevis Oocytes and Yeast. Tada Y; Endo C; Katsuhara M; Horie T; Shibasaka M; Nakahara Y; Kurusu T Plant Cell Physiol; 2019 Jan; 60(1):176-187. PubMed ID: 30325438 [TBL] [Abstract][Full Text] [Related]
9. Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity. Yousfi S; Rabhi M; Hessini K; Abdelly C; Gharsalli M Plant Biol (Stuttg); 2010 Jul; 12(4):650-8. PubMed ID: 20636908 [TBL] [Abstract][Full Text] [Related]
10. Water transport properties of root cells contribute to salt tolerance in halophytic grasses Poa juncifolia and Puccinellia nuttalliana. Vaziriyeganeh M; Lee SH; Zwiazek JJ Plant Sci; 2018 Nov; 276():54-62. PubMed ID: 30348328 [TBL] [Abstract][Full Text] [Related]
11. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Silva EN; Silveira JA; Rodrigues CR; Viégas RA Plant Biol (Stuttg); 2015 Sep; 17(5):1023-9. PubMed ID: 25865670 [TBL] [Abstract][Full Text] [Related]
12. Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfalfa cultivars. Xiong X; Liu N; Wei YQ; Bi YX; Luo JC; Xu RX; Zhou JQ; Zhang YJ Plant Physiol Biochem; 2018 Nov; 132():434-444. PubMed ID: 30290335 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Yıldıztugay E; Sekmen AH; Turkan I; Kucukoduk M Plant Physiol Biochem; 2011 Aug; 49(8):816-24. PubMed ID: 21605980 [TBL] [Abstract][Full Text] [Related]
14. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. Singh D; Singh CK; Kumari S; Singh Tomar RS; Karwa S; Singh R; Singh RB; Sarkar SK; Pal M PLoS One; 2017; 12(5):e0177465. PubMed ID: 28542267 [TBL] [Abstract][Full Text] [Related]
15. Ion homeostasis in a salt-secreting halophytic grass. Sanadhya P; Agarwal P; Agarwal PK AoB Plants; 2015 May; 7():. PubMed ID: 25990364 [TBL] [Abstract][Full Text] [Related]
16. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K(+)/Na(+) selectivity and proline accumulation. Ghars MA; Parre E; Debez A; Bordenave M; Richard L; Leport L; Bouchereau A; Savouré A; Abdelly C J Plant Physiol; 2008 Apr; 165(6):588-99. PubMed ID: 17723252 [TBL] [Abstract][Full Text] [Related]
17. Ecophysiological response of Crambe maritima to airborne and soil-borne salinity. de Vos AC; Broekman R; Groot MP; Rozema J Ann Bot; 2010 Jun; 105(6):925-37. PubMed ID: 20354071 [TBL] [Abstract][Full Text] [Related]
18. Salicylic Acid Manipulates Ion Accumulation and Distribution in Favor of Salinity Tolerance in Mohammadi H; Rahimpour B; Pirasteh-Anosheh H; Race M Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162599 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus Limitation Improved Salt Tolerance in Maize Through Tissue Mass Density Increase, Osmolytes Accumulation, and Na Tang H; Niu L; Wei J; Chen X; Chen Y Front Plant Sci; 2019; 10():856. PubMed ID: 31333699 [TBL] [Abstract][Full Text] [Related]
20. Salt tolerance in Aster tripolium L. II. Ionic regulation. Shennan C; Hunt R; Macrobbie EAC Plant Cell Environ; 1987 Jan; 10(1):67-74. PubMed ID: 28692159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]