These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 25024399)
1. Diet-induced (epigenetic) changes in bone marrow augment atherosclerosis. van Kampen E; Jaminon A; van Berkel TJ; Van Eck M J Leukoc Biol; 2014 Nov; 96(5):833-41. PubMed ID: 25024399 [TBL] [Abstract][Full Text] [Related]
2. Hematopoietic arginase 1 deficiency results in decreased leukocytosis and increased foam cell formation but does not affect atherosclerosis. Ren B; Van Kampen E; Van Berkel TJ; Cruickshank SM; Van Eck M Atherosclerosis; 2017 Jan; 256():35-46. PubMed ID: 27998825 [TBL] [Abstract][Full Text] [Related]
3. Prolactin receptor antagonism uncouples lipids from atherosclerosis susceptibility. van der Sluis RJ; van den Aardweg T; Reuwer AQ; Twickler MT; Boutillon F; Van Eck M; Goffin V; Hoekstra M J Endocrinol; 2014 Sep; 222(3):341-50. PubMed ID: 25063756 [TBL] [Abstract][Full Text] [Related]
4. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Potteaux S; Combadière C; Esposito B; Lecureuil C; Ait-Oufella H; Merval R; Ardouin P; Tedgui A; Mallat Z Arterioscler Thromb Vasc Biol; 2006 Aug; 26(8):1858-63. PubMed ID: 16763157 [TBL] [Abstract][Full Text] [Related]
5. Bone marrow-derived multidrug resistance protein ABCB4 protects against atherosclerotic lesion development in LDL receptor knockout mice. Pennings M; Hildebrand RB; Ye D; Kunne C; Van Berkel TJ; Groen AK; Van Eck M Cardiovasc Res; 2007 Oct; 76(1):175-83. PubMed ID: 17560559 [TBL] [Abstract][Full Text] [Related]
6. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice. van Kampen E; Beaslas O; Hildebrand RB; Lammers B; Van Berkel TJ; Olkkonen VM; Van Eck M PLoS One; 2014; 9(10):e109024. PubMed ID: 25347070 [TBL] [Abstract][Full Text] [Related]
7. Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation. Harada N; Ito K; Hosoya T; Mimura J; Maruyama A; Noguchi N; Yagami K; Morito N; Takahashi S; Maher JM; Yamamoto M; Itoh K Free Radic Biol Med; 2012 Dec; 53(12):2256-62. PubMed ID: 23051009 [TBL] [Abstract][Full Text] [Related]
8. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice. Caravaggio JW; Hasu M; MacLaren R; Thabet M; Raizman JE; Veinot JP; Marcel YL; Milne RW; Whitman SC Cardiovasc Pathol; 2013; 22(6):458-64. PubMed ID: 23684818 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of soluble epoxide hydrolase alleviated atherosclerosis by reducing monocyte infiltration in Ldlr(-/-) mice. Li D; Liu Y; Zhang X; Lv H; Pang W; Sun X; Gan LM; Hammock BD; Ai D; Zhu Y J Mol Cell Cardiol; 2016 Sep; 98():128-37. PubMed ID: 27496380 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological Treatment with Annexin A1 Reduces Atherosclerotic Plaque Burden in LDLR-/- Mice on Western Type Diet. Kusters DH; Chatrou ML; Willems BA; De Saint-Hubert M; Bauwens M; van der Vorst E; Bena S; Biessen EA; Perretti M; Schurgers LJ; Reutelingsperger CP PLoS One; 2015; 10(6):e0130484. PubMed ID: 26090792 [TBL] [Abstract][Full Text] [Related]
14. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice. Van Eck M; Ye D; Hildebrand RB; Kar Kruijt J; de Haan W; Hoekstra M; Rensen PC; Ehnholm C; Jauhiainen M; Van Berkel TJ Circ Res; 2007 Mar; 100(5):678-85. PubMed ID: 17293475 [TBL] [Abstract][Full Text] [Related]
15. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Ye D; Meurs I; Ohigashi M; Calpe-Berdiel L; Habets KL; Zhao Y; Kubo Y; Yamaguchi A; Van Berkel TJ; Nishi T; Van Eck M Biochem Biophys Res Commun; 2010 May; 395(3):387-94. PubMed ID: 20382126 [TBL] [Abstract][Full Text] [Related]
16. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. George J; Afek A; Abashidze A; Shmilovich H; Deutsch V; Kopolovich J; Miller H; Keren G Arterioscler Thromb Vasc Biol; 2005 Dec; 25(12):2636-41. PubMed ID: 16195475 [TBL] [Abstract][Full Text] [Related]
17. Effect of macrophage-derived apolipoprotein E on hyperlipidemia and atherosclerosis of LDLR-deficient mice. Shi W; Wang X; Wong J; Hedrick CC; Wong H; Castellani LW; Lusis AJ Biochem Biophys Res Commun; 2004 Apr; 317(1):223-9. PubMed ID: 15047172 [TBL] [Abstract][Full Text] [Related]
18. Serum amyloid A regulates monopoiesis in hyperlipidemic Ldlr(-/-) mice. Krishack PA; Sontag TJ; Getz GS; Reardon CA FEBS Lett; 2016 Aug; 590(16):2650-60. PubMed ID: 27339627 [TBL] [Abstract][Full Text] [Related]
19. Specific loss of toll-like receptor 2 on bone marrow derived cells decreases atherosclerosis in LDL receptor null mice. Hasu M; Thabet M; Tam N; Whitman SC Can J Physiol Pharmacol; 2011 Oct; 89(10):737-42. PubMed ID: 21895526 [TBL] [Abstract][Full Text] [Related]
20. Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. Seijkens T; Hoeksema MA; Beckers L; Smeets E; Meiler S; Levels J; Tjwa M; de Winther MP; Lutgens E FASEB J; 2014 May; 28(5):2202-13. PubMed ID: 24481967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]