These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25024411)

  • 1. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.
    Deck S; Gand F; Brunet V; Ben Khelil S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130325. PubMed ID: 25024411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large eddy simulation for aerodynamics: status and perspectives.
    Sagaut P; Deck S
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2849-60. PubMed ID: 19531507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction. Computational aerodynamics.
    Tucker PG
    Philos Trans A Math Phys Eng Sci; 2007 Oct; 365(1859):2379-88. PubMed ID: 17519203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Noise Certification during Design: Airframe Noise Simulations for Full-Scale, Complete Aircraft.
    Khorrami MR; Fares E
    CEAS Aeronaut J; 2019 Mar; 10(1):31-67. PubMed ID: 33505531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of Conjugate Heat Transfer in Turbulent Channel Flow Using Advanced Wall-Modeled Large Eddy Simulation Techniques.
    Li Y; Ries F; Nishad K; Sadiki A
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of jet noise: a perspective from large-eddy simulations.
    Brès GA; Lele SK
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190081. PubMed ID: 31607250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance computing in computational fluid dynamics: progress and challenges.
    Cant S
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1211-25. PubMed ID: 12804275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-order computational fluid dynamics tools for aircraft design.
    Wang ZJ
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130318. PubMed ID: 25024419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards extending the aircraft flight envelope by mitigating transonic airfoil buffet.
    Lagemann E; Brunton SL; Schröder W; Lagemann C
    Nat Commun; 2024 Jun; 15(1):5020. PubMed ID: 38866747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids.
    Park MA; Abdol-Hamid KS; Elmiligui A
    J Aircr; 2017 Nov; 54(6):2027-2049. PubMed ID: 32690979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A second golden age of aeroacoustics?
    Lele SK; Nichols JW
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130321. PubMed ID: 25024417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fluid injection on turbulence and noise reduction of a supersonic jet.
    Prasad C; Morris P
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190082. PubMed ID: 31607252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma.
    Arakawa H; Inagaki S; Sasaki M; Kosuga Y; Kobayashi T; Kasuya N; Nagashima Y; Yamada T; Lesur M; Fujisawa A; Itoh K; Itoh SI
    Sci Rep; 2016 Sep; 6():33371. PubMed ID: 27628894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body.
    Yao HD; Davidson L
    J Acoust Soc Am; 2019 May; 145(5):3163. PubMed ID: 31153304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035.
    Gourdain N; Sicot F; Duchaine F; Gicquel L
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130323. PubMed ID: 25024422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.
    Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J
    J Biomech; 2010 Aug; 43(12):2281-7. PubMed ID: 20488446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prospect of using large eddy and detached eddy simulations in engineering design, and the research required to get there.
    Larsson J; Wang Q
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130329. PubMed ID: 25024421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows.
    Chaouat B
    Flow Turbul Combust; 2017; 99(2):279-327. PubMed ID: 30069154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.