BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25024738)

  • 21. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair.
    Beck BD; Lee SS; Williamson E; Hromas RA; Lee SH
    Biochemistry; 2011 May; 50(20):4360-70. PubMed ID: 21491884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by automethylation.
    Williamson EA; Rasila KK; Corwin LK; Wray J; Beck BD; Severns V; Mobarak C; Lee SH; Nickoloff JA; Hromas R
    Nucleic Acids Res; 2008 Oct; 36(18):5822-31. PubMed ID: 18790802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The roles of the human SETMAR (Metnase) protein in illegitimate DNA recombination and non-homologous end joining repair.
    Tellier M; Chalmers R
    DNA Repair (Amst); 2019 Aug; 80():26-35. PubMed ID: 31238295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ataxin-3 promotes genome integrity by stabilizing Chk1.
    Tu Y; Liu H; Zhu X; Shen H; Ma X; Wang F; Huang M; Gong J; Li X; Wang Y; Guo C; Tang TS
    Nucleic Acids Res; 2017 May; 45(8):4532-4549. PubMed ID: 28180282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1.
    Cassidy KB; Bang S; Kurokawa M; Gerber SA
    FEBS J; 2020 May; 287(10):1985-1999. PubMed ID: 31713291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early Chk1 phosphorylation is driven by temozolomide-induced, DNA double strand break- and mismatch repair-independent DNA damage.
    Ito M; Ohba S; Gaensler K; Ronen SM; Mukherjee J; Pieper RO
    PLoS One; 2013; 8(5):e62351. PubMed ID: 23667469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ubiquitin-specific peptidase 20 regulates Rad17 stability, checkpoint kinase 1 phosphorylation and DNA repair by homologous recombination.
    Shanmugam I; Abbas M; Ayoub F; Mirabal S; Bsaili M; Caulder EK; Weinstock DM; Tomkinson AE; Hromas R; Shaheen M
    J Biol Chem; 2014 Aug; 289(33):22739-22748. PubMed ID: 24923443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair.
    Lee SH; Oshige M; Durant ST; Rasila KK; Williamson EA; Ramsey H; Kwan L; Nickoloff JA; Hromas R
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18075-80. PubMed ID: 16332963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extensive RPA2 hyperphosphorylation promotes apoptosis in response to DNA replication stress in CHK1 inhibited cells.
    Zuazua-Villar P; Ganesh A; Phear G; Gagou ME; Meuth M
    Nucleic Acids Res; 2015 Nov; 43(20):9776-87. PubMed ID: 26271993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks.
    Lee J; Dunphy WG
    Mol Biol Cell; 2013 May; 24(9):1343-53. PubMed ID: 23468519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-PKcs is required to maintain stability of Chk1 and Claspin for optimal replication stress response.
    Lin YF; Shih HY; Shang Z; Matsunaga S; Chen BP
    Nucleic Acids Res; 2014 Apr; 42(7):4463-73. PubMed ID: 24500207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression levels of the human DNA repair protein metnase influence lentiviral genomic integration.
    Williamson EA; Farrington J; Martinez L; Ness S; O'Rourke J; Lee SH; Nickoloff J; Hromas R
    Biochimie; 2008 Sep; 90(9):1422-6. PubMed ID: 18549821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the human Hsmar1-derived transposase domain in the DNA repair enzyme Metnase.
    Goodwin KD; He H; Imasaki T; Lee SH; Georgiadis MM
    Biochemistry; 2010 Jul; 49(27):5705-13. PubMed ID: 20521842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. More forks on the road to replication stress recovery.
    Allen C; Ashley AK; Hromas R; Nickoloff JA
    J Mol Cell Biol; 2011 Feb; 3(1):4-12. PubMed ID: 21278446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing.
    Rath A; Hromas R; De Benedetti A
    BMC Mol Biol; 2014 Mar; 15():6. PubMed ID: 24655462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual functions of DNA replication forks in checkpoint signaling and PCNA ubiquitination.
    Yang XH; Zou L
    Cell Cycle; 2009 Jan; 8(2):191-4. PubMed ID: 19158510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase.
    Jin J; Shirogane T; Xu L; Nalepa G; Qin J; Elledge SJ; Harper JW
    Genes Dev; 2003 Dec; 17(24):3062-74. PubMed ID: 14681206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation.
    Min W; Bruhn C; Grigaravicius P; Zhou ZW; Li F; Krüger A; Siddeek B; Greulich KO; Popp O; Meisezahl C; Calkhoven CF; Bürkle A; Xu X; Wang ZQ
    Nat Commun; 2013; 4():2993. PubMed ID: 24356582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.