These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 25025304)
21. Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift. Medvetz D; Priolo C; Henske EP Mol Cancer Res; 2015 Jan; 13(1):3-8. PubMed ID: 25298408 [TBL] [Abstract][Full Text] [Related]
22. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. Sun J; Liu Y; Moreno S; Baudry M; Bi X J Neurosci; 2015 Mar; 35(11):4706-18. PubMed ID: 25788687 [TBL] [Abstract][Full Text] [Related]
23. MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Chen MB; Wei MX; Han JY; Wu XY; Li C; Wang J; Shen W; Lu PH Cell Signal; 2014 Jan; 26(1):102-9. PubMed ID: 23899558 [TBL] [Abstract][Full Text] [Related]
24. Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Tanaka Y; Matsuwaki T; Yamanouchi K; Nishihara M Neuroscience; 2013 Oct; 250():8-19. PubMed ID: 23830905 [TBL] [Abstract][Full Text] [Related]
25. Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123). Crowell B; Lee GH; Nikolaeva I; Dal Pozzo V; D'Arcangelo G eNeuro; 2015; 2(6):. PubMed ID: 26693177 [TBL] [Abstract][Full Text] [Related]
26. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. Kathage B; Gehlert S; Ulbricht A; Lüdecke L; Tapia VE; Orfanos Z; Wenzel D; Bloch W; Volkmer R; Fleischmann BK; Fürst DO; Höhfeld J Biochim Biophys Acta Mol Cell Res; 2017 Jan; 1864(1):62-75. PubMed ID: 27756573 [TBL] [Abstract][Full Text] [Related]
27. mTORC1 enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related tumor development. Peng H; Liu J; Sun Q; Chen R; Wang Y; Duan J; Li C; Li B; Jing Y; Chen X; Mao Q; Xu KF; Walker CL; Li J; Wang J; Zhang H Oncogene; 2013 Sep; 32(39):4702-11. PubMed ID: 23108404 [TBL] [Abstract][Full Text] [Related]
29. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). Dan HC; Ebbs A; Pasparakis M; Van Dyke T; Basseres DS; Baldwin AS J Biol Chem; 2014 Sep; 289(36):25227-40. PubMed ID: 24990947 [TBL] [Abstract][Full Text] [Related]
30. Development of hypomelanotic macules is associated with constitutive activated mTORC1 in tuberous sclerosis complex. Møller LB; Schönewolf-Greulich B; Rosengren T; Larsen LJ; Ostergaard JR; Sommerlund M; Ostenfeldt C; Stausbøl-Grøn B; Linnet KM; Gregersen PA; Jensen UB Mol Genet Metab; 2017 Apr; 120(4):384-391. PubMed ID: 28336152 [TBL] [Abstract][Full Text] [Related]
31. Tuberin activates and controls the distribution of Rac1 via association with p62 and ubiquitin through the mTORC1 signaling pathway. Okura H; Kobayashi T; Koike M; Ohsawa M; Zhang D; Arai H; Uchiyama Y; Hino O Int J Oncol; 2013 Aug; 43(2):447-56. PubMed ID: 23759924 [TBL] [Abstract][Full Text] [Related]
32. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Hino O; Kobayashi T Cancer Sci; 2017 Jan; 108(1):5-11. PubMed ID: 27862655 [TBL] [Abstract][Full Text] [Related]
33. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits. Feliciano DM; Lin TV; Hartman NW; Bartley CM; Kubera C; Hsieh L; Lafourcade C; O'Keefe RA; Bordey A Int J Dev Neurosci; 2013 Nov; 31(7):667-78. PubMed ID: 23485365 [TBL] [Abstract][Full Text] [Related]