These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25025341)

  • 1. Quantification of spatially differentiated resource footprints for products and services through a macro-economic and thermodynamic approach.
    Huysman S; Schaubroeck T; Dewulf J
    Environ Sci Technol; 2014 Aug; 48(16):9709-16. PubMed ID: 25025341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting.
    Dewulf J; Bösch ME; De Meester B; Van der Vorst G; Van Langenhove H; Hellweg S; Huijbregts MA
    Environ Sci Technol; 2007 Dec; 41(24):8477-83. PubMed ID: 18200882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic metrics for aggregation of natural resources in life cycle analysis: insight via application to some transportation fuels.
    Baral A; Bakshi BR
    Environ Sci Technol; 2010 Jan; 44(2):800-7. PubMed ID: 20020741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergy accounting for regional studies: case study of Canada and its provinces.
    Hossaini N; Hewage K
    J Environ Manage; 2013 Mar; 118():177-85. PubMed ID: 23435155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological accounting based on extended exergy: a sustainability perspective.
    Dai J; Chen B; Sciubba E
    Environ Sci Technol; 2014 Aug; 48(16):9826-33. PubMed ID: 25062284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How much will China weigh? Perspectives from consumption structure and technology development.
    Xu M; Zhang T; Allenby B
    Environ Sci Technol; 2008 Jun; 42(11):4022-8. PubMed ID: 18589961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective.
    Taelman SE; De Meester S; Roef L; Michiels M; Dewulf J
    Bioresour Technol; 2013 Dec; 150():513-22. PubMed ID: 24012094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Health-care systems' resource footprints and their access and quality in 49 regions between 1995 and 2015: an input-output analysis.
    Andrieu B; Marrauld L; Vidal O; Egnell M; Boyer L; Fond G
    Lancet Planet Health; 2023 Sep; 7(9):e747-e758. PubMed ID: 37673545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar energy demand (SED) of commodity life cycles.
    Rugani B; Huijbregts MA; Mutel C; Bastianoni S; Hellweg S
    Environ Sci Technol; 2011 Jun; 45(12):5426-33. PubMed ID: 21545085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for ecosystem services in life cycle assessment, Part I: a critical review.
    Zhang Y; Singh S; Bakshi BR
    Environ Sci Technol; 2010 Apr; 44(7):2232-42. PubMed ID: 20178382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints.
    Acquaye A; Feng K; Oppon E; Salhi S; Ibn-Mohammed T; Genovese A; Hubacek K
    J Environ Manage; 2017 Feb; 187():571-585. PubMed ID: 27876164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material and energy productivity.
    Steinberger JK; Krausmann F
    Environ Sci Technol; 2011 Feb; 45(4):1169-76. PubMed ID: 21210661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.
    Alanya S; Dewulf J; Duran M
    Environ Sci Technol; 2015 Aug; 49(16):9996-10006. PubMed ID: 26218291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population, resources, environment: an uncertain future.
    Repetto R
    Popul Bull; 1987 Jul; 42(2):3-43. PubMed ID: 12268583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outsourcing natural resource requirements within China.
    Zhang Y; Shao L; Sun X; Han M; Zhao X; Meng J; Zhang B; Qiao H
    J Environ Manage; 2018 Dec; 228():292-302. PubMed ID: 30236882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How sustainable are biofuels? Answers and further questions arising from an ecological footprint perspective.
    Stoeglehner G; Narodoslawsky M
    Bioresour Technol; 2009 Aug; 100(16):3825-30. PubMed ID: 19268573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved calculation of the exergy of natural resources for exergetic life cycle assessment (ELCA).
    De Meester B; Dewulf J; Janssens A; Van Langenhove H
    Environ Sci Technol; 2006 Nov; 40(21):6844-51. PubMed ID: 17144320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic evaluation of the resource consumption of active pharmaceutical ingredient production at three different levels.
    Van der Vorst G; Dewulf J; Aelterman W; De Witte B; Van Langenhove H
    Environ Sci Technol; 2011 Apr; 45(7):3040-6. PubMed ID: 21391625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fairness analysis and compensation strategy in the Triangle of Central China driven by water-carbon-ecological footprints.
    Chen Y; Lu H; Li J; Qiao Y; Yan P; Ren L; Xia J
    Environ Sci Pollut Res Int; 2021 Nov; 28(41):58502-58522. PubMed ID: 34117545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding exergy analysis to account for ecosystem products and services.
    Hau JL; Bakshi BR
    Environ Sci Technol; 2004 Jul; 38(13):3768-77. PubMed ID: 15296331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.