BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25025399)

  • 1. Dual-mode optical sensing of organic vapors and proteins with polydiacetylene (PDA)-embedded electrospun nanofibers.
    Davis BW; Burris AJ; Niamnont N; Hare CD; Chen CY; Sukwattanasinitt M; Cheng Q
    Langmuir; 2014 Aug; 30(31):9616-22. PubMed ID: 25025399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydiacetylene-based colorimetric and fluorescent chemosensor for the detection of carbon dioxide.
    Xu Q; Lee S; Cho Y; Kim MH; Bouffard J; Yoon J
    J Am Chem Soc; 2013 Nov; 135(47):17751-4. PubMed ID: 24195440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydiacetylene (PDA)-based colorimetric detection of biotin-streptavidin interactions.
    Jung YK; Park HG; Kim JM
    Biosens Bioelectron; 2006 Feb; 21(8):1536-44. PubMed ID: 16102961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydiacetylene-based electrospun fibers for detection of HCl gas.
    Jeon H; Lee J; Kim MH; Yoon J
    Macromol Rapid Commun; 2012 Jun; 33(11):972-6. PubMed ID: 22492472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric and fluorometric detection of neomycin based on conjugated polydiacetylene supramolecules.
    Zhou G; Wang F; Wang H; Kambam S; Chen X
    Macromol Rapid Commun; 2013 Jun; 34(11):944-8. PubMed ID: 23649672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane.
    Marek P; Senecal K; Nida D; Magnone J; Senecal A
    J Nanobiotechnology; 2011 Oct; 9():48. PubMed ID: 22024374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal polymorphism in polydiacetylene-embedded electrospun polyvinylidene fluoride nanofibers.
    Moazeni N; Latifi M; Merati AA; Rouhani S
    Soft Matter; 2017 Nov; 13(44):8178-8187. PubMed ID: 29072768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRET detection of proteins using fluorescently doped electrospun nanofibers and pattern recognition.
    Davis BW; Niamnont N; Dillon R; Bardeen CJ; Sukwattanasinitt M; Cheng Q
    Langmuir; 2011 May; 27(10):6401-8. PubMed ID: 21491867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbead-assisted PDA sensor for the detection of genetically modified organisms.
    Lim MC; Shin YJ; Jeon TJ; Kim HY; Kim YR
    Anal Bioanal Chem; 2011 May; 400(3):777-85. PubMed ID: 21387154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric and fluorometric assays based on conjugated polydiacetylene supramolecules for screening acetylcholinesterase and its inhibitors.
    Zhou G; Wang F; Wang H; Kambam S; Chen X; Yoon J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3275-80. PubMed ID: 23544614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric detection of clinical DNA samples using an intercalator-conjugated polydiacetylene sensor.
    Jung YK; Park HG
    Biosens Bioelectron; 2015 Oct; 72():127-32. PubMed ID: 25978440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-labeled detection of waterborne pathogen Cryptosporidium parvum using a polydiacetylene-based fluorescence chip.
    Park CK; Kang CD; Sim SJ
    Biotechnol J; 2008 May; 3(5):687-93. PubMed ID: 18381618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dot-assembled nanoparticles with polydiacetylene supramolecule toward label-free, multiplexed optical detection.
    Kyeong S; Kang H; Yim J; Jeon SJ; Jeong CH; Lee YS; Jun BH; Kim JH
    J Colloid Interface Sci; 2013 Mar; 394():44-8. PubMed ID: 23348001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors.
    Ahn DJ; Kim JM
    Acc Chem Res; 2008 Jul; 41(7):805-16. PubMed ID: 18348539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced fluorescence sensing of amine vapor based on ultrathin nanofibers.
    Che Y; Zang L
    Chem Commun (Camb); 2009 Sep; (34):5106-8. PubMed ID: 20448961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.
    Xue P; Yao B; Wang P; Gong P; Zhang Z; Lu R
    Chemistry; 2015 Nov; 21(48):17508-15. PubMed ID: 26449736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors.
    Yoon B; Shin H; Kang EM; Cho DW; Shin K; Chung H; Lee CW; Kim JM
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4527-35. PubMed ID: 23469803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A litmus-type colorimetric and fluorometric volatile organic compound sensor based on inkjet-printed polydiacetylenes on paper substrates.
    Yoon B; Park IS; Shin H; Park HJ; Lee CW; Kim JM
    Macromol Rapid Commun; 2013 May; 34(9):731-5. PubMed ID: 23417983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust polydiacetylene-based colorimetric sensing material developed with amyloid fibrils of α-synuclein.
    Yang JE; Park JS; Cho E; Jung S; Paik SR
    Langmuir; 2015 Feb; 31(5):1802-10. PubMed ID: 25602613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent colorimetric paper-based polydiacetylene sensors from diacetylene lipids.
    Pumtang S; Siripornnoppakhun W; Sukwattanasinitt M; Ajavakom A
    J Colloid Interface Sci; 2011 Dec; 364(2):366-72. PubMed ID: 21943512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.