These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25025688)

  • 1. Double emulsions from a capillary array injection microfluidic device.
    Shang L; Cheng Y; Wang J; Ding H; Rong F; Zhao Y; Gu Z
    Lab Chip; 2014 Sep; 14(18):3489-93. PubMed ID: 25025688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput production of single core double emulsions in a parallelized microfluidic device.
    Romanowsky MB; Abate AR; Rotem A; Holtze C; Weitz DA
    Lab Chip; 2012 Feb; 12(4):802-7. PubMed ID: 22222423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.
    Ye C; Chen A; Colombo P; Martinez C
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S461-73. PubMed ID: 20484226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-step microfluidic fabrication of soft monodisperse polyelectrolyte microcapsules by interfacial complexation.
    Kaufman G; Boltyanskiy R; Nejati S; Thiam AR; Loewenberg M; Dufresne ER; Osuji CO
    Lab Chip; 2014 Sep; 14(18):3494-7. PubMed ID: 25025528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faster multiple emulsification with drop splitting.
    Abate AR; Weitz DA
    Lab Chip; 2011 Jun; 11(11):1911-5. PubMed ID: 21505660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic fabrication of monodisperse polylactide microcapsules with tunable structures through rapid precipitation.
    Watanabe T; Kimura Y; Ono T
    Langmuir; 2013 Nov; 29(46):14082-8. PubMed ID: 24164350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Step emulsification: high-throughput production of monodisperse droplets.
    Liu L; Xiang N; Ni Z; Huang X; Zheng J; Wang Y; Zhang X
    Biotechniques; 2020 Mar; 68(3):114-116. PubMed ID: 31973559
    [No Abstract]   [Full Text] [Related]  

  • 13. Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device.
    Xu JH; Chen R; Wang YD; Luo GS
    Lab Chip; 2012 May; 12(11):2029-36. PubMed ID: 22508390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step formation of multiple emulsions in microfluidics.
    Abate AR; Thiele J; Weitz DA
    Lab Chip; 2011 Jan; 11(2):253-8. PubMed ID: 20967395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device to study the digestion of trapped lipid droplets.
    Marze S; Algaba H; Marquis M
    Food Funct; 2014 Jul; 5(7):1481-8. PubMed ID: 24820001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications.
    Lin YH; Chen CT; Huang LL; Lee GB
    Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices.
    Hashimoto M; Garstecki P; Whitesides GM
    Small; 2007 Oct; 3(10):1792-802. PubMed ID: 17890646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.