BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2344 related articles for article (PubMed ID: 25025887)

  • 41. Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors.
    Gwinner MC; Jakubka F; Gannott F; Sirringhaus H; Zaumseil J
    ACS Nano; 2012 Jan; 6(1):539-48. PubMed ID: 22142143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excess Polymer in Single-Walled Carbon Nanotube Thin-Film Transistors: Its Removal Prior to Fabrication Is Unnecessary.
    Mirka B; Rice NA; Williams P; Tousignant MN; Boileau NT; Bodnaryk WJ; Fong D; Adronov A; Lessard BH
    ACS Nano; 2021 May; 15(5):8252-8266. PubMed ID: 33831298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scalable and effective enrichment of semiconducting single-walled carbon nanotubes by a dual selective naphthalene-based azo dispersant.
    Sundramoorthy AK; Mesgari S; Wang J; Kumar R; Sk MA; Yeap SH; Zhang Q; Sze SK; Lim KH; Chan-Park MB
    J Am Chem Soc; 2013 Apr; 135(15):5569-81. PubMed ID: 23521315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex.
    Bonnet P; Buisson JP; Nomède Martyr N; Bizot H; Buelon A; Chauvet O
    Phys Chem Chem Phys; 2009 Oct; 11(38):8626-31. PubMed ID: 19774297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of the chemical structure of polyfluorene on selective extraction of semiconducting single-walled carbon nanotubes.
    Fukumaru T; Toshimitsu F; Fujigaya T; Nakashima N
    Nanoscale; 2014 Jun; 6(11):5879-86. PubMed ID: 24752456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors.
    Wang H; Koleilat GI; Liu P; Jiménez-Osés G; Lai YC; Vosgueritchian M; Fang Y; Park S; Houk KN; Bao Z
    ACS Nano; 2014 Mar; 8(3):2609-17. PubMed ID: 24484388
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection.
    Chang J; Mao S; Zhang Y; Cui S; Steeber DA; Chen J
    Biosens Bioelectron; 2013 Apr; 42():186-92. PubMed ID: 23202350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of backbone chemical structure of polymers on selective (n,m)single-walled carbon nanotube recognition/extraction behavior.
    Ozawa H; Fujigaya T; Niidome Y; Nakashima N
    Chem Asian J; 2011 Dec; 6(12):3281-5. PubMed ID: 21936058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions.
    Blackburn JL; Engtrakul C; McDonald TJ; Dillon AC; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25551-8. PubMed ID: 17166007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.
    Simmons TJ; Bult J; Hashim DP; Linhardt RJ; Ajayan PM
    ACS Nano; 2009 Apr; 3(4):865-70. PubMed ID: 19334688
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes.
    Hwang JY; Nish A; Doig J; Douven S; Chen CW; Chen LC; Nicholas RJ
    J Am Chem Soc; 2008 Mar; 130(11):3543-53. PubMed ID: 18293976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Species enrichment of SWNTs with pyrene alkylamide derivatives: is the alkyl chain length important?
    Pan X; Cai QJ; Li CM; Zhang Q; Chan-Park MB
    Nanotechnology; 2009 Jul; 20(30):305601. PubMed ID: 19584420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature and pH-responsive single-walled carbon nanotube dispersions.
    Wang D; Chen L
    Nano Lett; 2007 Jun; 7(6):1480-4. PubMed ID: 17488048
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions.
    Cathcart H; Nicolosi V; Hughes JM; Blau WJ; Kelly JM; Quinn SJ; Coleman JN
    J Am Chem Soc; 2008 Sep; 130(38):12734-44. PubMed ID: 18761456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene.
    Xu L; Valášek M; Hennrich F; Sedghamiz E; Penaloza-Amion M; Häussinger D; Wenzel W; Kappes MM; Mayor M
    ACS Nano; 2021 Mar; 15(3):4699-4709. PubMed ID: 33626282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 118.