These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 25025981)
1. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. Schrof S; Varga P; Galvis L; Raum K; Masic A J Struct Biol; 2014 Sep; 187(3):266-275. PubMed ID: 25025981 [TBL] [Abstract][Full Text] [Related]
2. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Schrof S; Varga P; Hesse B; Schöne M; Schütz R; Masic A; Raum K Acta Biomater; 2016 Oct; 44():51-64. PubMed ID: 27497843 [TBL] [Abstract][Full Text] [Related]
3. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Falgayrac G; Facq S; Leroy G; Cortet B; Penel G Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291 [TBL] [Abstract][Full Text] [Related]
4. Bone osteonal tissues by Raman spectral mapping: orientation-composition. Kazanci M; Roschger P; Paschalis EP; Klaushofer K; Fratzl P J Struct Biol; 2006 Dec; 156(3):489-96. PubMed ID: 16931054 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Varga P; Pacureanu A; Langer M; Suhonen H; Hesse B; Grimal Q; Cloetens P; Raum K; Peyrin F Acta Biomater; 2013 Sep; 9(9):8118-27. PubMed ID: 23707503 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Reznikov N; Almany-Magal R; Shahar R; Weiner S Bone; 2013 Feb; 52(2):676-83. PubMed ID: 23153959 [TBL] [Abstract][Full Text] [Related]
7. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. Hofmann T; Heyroth F; Meinhard H; Fränzel W; Raum K J Biomech; 2006; 39(12):2282-94. PubMed ID: 16144702 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Reznikov N; Shahar R; Weiner S Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799 [TBL] [Abstract][Full Text] [Related]
9. Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy. Masic A; Bertinetti L; Schuetz R; Galvis L; Timofeeva N; Dunlop JW; Seto J; Hartmann MA; Fratzl P Biomacromolecules; 2011 Nov; 12(11):3989-96. PubMed ID: 21954830 [TBL] [Abstract][Full Text] [Related]
10. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures. Raguin E; Rechav K; Shahar R; Weiner S Acta Biomater; 2021 Feb; 121():497-513. PubMed ID: 33217569 [TBL] [Abstract][Full Text] [Related]
11. Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone. Yamamoto T; Hasegawa T; Sasaki M; Hongo H; Tabata C; Liu Z; Li M; Amizuka N J Electron Microsc (Tokyo); 2012 Apr; 61(2):113-21. PubMed ID: 22362877 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of type VI collagen in the primary osteon of the rat femur during postnatal development. Kohara Y; Soeta S; Izu Y; Amasaki H J Anat; 2015 May; 226(5):478-88. PubMed ID: 25943007 [TBL] [Abstract][Full Text] [Related]
13. The effect of hydration on mechanical anisotropy, topography and fibril organization of the osteonal lamellae. Faingold A; Cohen SR; Shahar R; Weiner S; Rapoport L; Wagner HD J Biomech; 2014 Jan; 47(2):367-72. PubMed ID: 24332267 [TBL] [Abstract][Full Text] [Related]
15. Different fibrillar architectures coexisting in Haversian bone. Raspanti M; Guizzardi S; Strocchi R; Ruggeri A Ital J Anat Embryol; 1995; 100 Suppl 1():103-12. PubMed ID: 11322282 [TBL] [Abstract][Full Text] [Related]
16. Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. Ascenzi MG; Lomovtsev A J Struct Biol; 2006 Jan; 153(1):14-30. PubMed ID: 16399238 [TBL] [Abstract][Full Text] [Related]
17. The 3D structure of the collagen fibril network in human trabecular bone: relation to trabecular organization. Reznikov N; Chase H; Brumfeld V; Shahar R; Weiner S Bone; 2015 Feb; 71():189-95. PubMed ID: 25445457 [TBL] [Abstract][Full Text] [Related]
18. Does 3D orientation account for variation in osteon morphology assessed by 2D histology? Hennig C; Thomas CD; Clement JG; Cooper DM J Anat; 2015 Oct; 227(4):497-505. PubMed ID: 26249538 [TBL] [Abstract][Full Text] [Related]
19. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues. Galvis L; Dunlop JW; Duda G; Fratzl P; Masic A PLoS One; 2013; 8(5):e63518. PubMed ID: 23691057 [TBL] [Abstract][Full Text] [Related]
20. Nanoindentation of osteonal bone lamellae. Faingold A; Cohen SR; Wagner HD J Mech Behav Biomed Mater; 2012 May; 9():198-206. PubMed ID: 22498296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]