BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25026155)

  • 1. A Bayesian approach to the creation of a study-customized neonatal brain atlas.
    Zhang Y; Chang L; Ceritoglu C; Skranes J; Ernst T; Mori S; Miller MI; Oishi K
    Neuroimage; 2014 Nov; 101():256-67. PubMed ID: 25026155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and application of human neonatal DTI atlases.
    Deshpande R; Chang L; Oishi K
    Front Neuroanat; 2015; 9():138. PubMed ID: 26578899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.
    Lim IA; Faria AV; Li X; Hsu JT; Airan RD; Mori S; van Zijl PC
    Neuroimage; 2013 Nov; 82():449-69. PubMed ID: 23769915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SRI24 multichannel atlas of normal adult human brain structure.
    Rohlfing T; Zahr NM; Sullivan EV; Pfefferbaum A
    Hum Brain Mapp; 2010 May; 31(5):798-819. PubMed ID: 20017133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of group-specific, whole-brain atlas generation using Volume-based Template Estimation (VTE): application to normal and Alzheimer's populations.
    Zhang Y; Zhang J; Hsu J; Oishi K; Faria AV; Albert M; Miller MI; Mori S
    Neuroimage; 2014 Jan; 84():406-19. PubMed ID: 24051356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-tensor-imaging 1-year-old and 2-year-old infant brain atlases with comprehensive gray and white matter labels.
    Song L; Peng Y; Ouyang M; Peng Q; Feng L; Sotardi S; Yu Q; Kang H; Sindabizera KL; Liu S; Huang H
    Hum Brain Mapp; 2024 May; 45(7):e26695. PubMed ID: 38727010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging.
    Oishi K; Faria AV; Yoshida S; Chang L; Mori S
    Int J Dev Neurosci; 2013 Nov; 31(7):512-24. PubMed ID: 23796902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White matter extension of the Melbourne Children's Regional Infant Brain atlas: M-CRIB-WM.
    Alexander B; Yang JY; Yao SHW; Wu MH; Chen J; Kelly CE; Ball G; Matthews LG; Seal ML; Anderson PJ; Doyle LW; Cheong JLY; Spittle AJ; Thompson DK
    Hum Brain Mapp; 2020 Jun; 41(9):2317-2333. PubMed ID: 32083379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping.
    Zhang Y; Wei H; Cronin MJ; He N; Yan F; Liu C
    Neuroimage; 2018 May; 171():176-189. PubMed ID: 29325780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereotaxic Magnetic Resonance Imaging Brain Atlases for Infants from 3 to 12 Months.
    Fillmore PT; Richards JE; Phillips-Meek MC; Cryer A; Stevens M
    Dev Neurosci; 2015; 37(6):515-32. PubMed ID: 26440296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology.
    Saleem KS; Avram AV; Glen D; Yen CC; Ye FQ; Komlosh M; Basser PJ
    Neuroimage; 2021 Dec; 245():118759. PubMed ID: 34838750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template.
    Mori S; Oishi K; Jiang H; Jiang L; Li X; Akhter K; Hua K; Faria AV; Mahmood A; Woods R; Toga AW; Pike GB; Neto PR; Evans A; Zhang J; Huang H; Miller MI; van Zijl P; Mazziotta J
    Neuroimage; 2008 Apr; 40(2):570-582. PubMed ID: 18255316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.
    Ballanger B; Tremblay L; Sgambato-Faure V; Beaudoin-Gobert M; Lavenne F; Le Bars D; Costes N
    Neuroimage; 2013 Aug; 77():26-43. PubMed ID: 23537938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vervet MRI atlas and label map for fully automated morphometric analyses.
    Maldjian JA; Daunais JB; Friedman DP; Whitlow CT
    Neuroinformatics; 2014 Oct; 12(4):543-50. PubMed ID: 24850577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan.
    Zhang F; Wu Y; Norton I; Rigolo L; Rathi Y; Makris N; O'Donnell LJ
    Neuroimage; 2018 Oct; 179():429-447. PubMed ID: 29920375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A digital 3D atlas of the marmoset brain based on multi-modal MRI.
    Liu C; Ye FQ; Yen CC; Newman JD; Glen D; Leopold DA; Silva AC
    Neuroimage; 2018 Apr; 169():106-116. PubMed ID: 29208569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic delineation of brain regions on MRI and PET images from the pig.
    Villadsen J; Hansen HD; Jørgensen LM; Keller SH; Andersen FL; Petersen IN; Knudsen GM; Svarer C
    J Neurosci Methods; 2018 Jan; 294():51-58. PubMed ID: 29146191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal atlas construction using sparse representation.
    Shi F; Wang L; Wu G; Li G; Gilmore JH; Lin W; Shen D
    Hum Brain Mapp; 2014 Sep; 35(9):4663-77. PubMed ID: 24638883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences.
    Zhang S; Arfanakis K
    Neuroimage; 2018 May; 172():40-50. PubMed ID: 29414497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The macaque brain ONPRC18 template with combined gray and white matter labelmap for multimodal neuroimaging studies of Nonhuman Primates.
    Weiss AR; Liu Z; Wang X; Liguore WA; Kroenke CD; McBride JL
    Neuroimage; 2021 Jan; 225():117517. PubMed ID: 33137475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.