BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25026416)

  • 1. Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2014 Aug; 48(16):9382-90. PubMed ID: 25026416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time evaluation of natural organic matter deposition processes onto model environmental surfaces.
    Li W; Liao P; Oldham T; Jiang Y; Pan C; Yuan S; Fortner JD
    Water Res; 2018 Feb; 129():231-239. PubMed ID: 29153876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2014 Jan; 48(2):961-9. PubMed ID: 24345218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.
    Chowdhury I; Hou WC; Goodwin D; Henderson M; Zepp RG; Bouchard D
    Water Res; 2015 Jul; 78():37-46. PubMed ID: 25898251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of nanoscale plastics with natural organic matter and silica surfaces using a quartz crystal microbalance.
    Shams M; Alam I; Chowdhury I
    Water Res; 2021 Jun; 197():117066. PubMed ID: 33774463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of natural organic matter on the deposition kinetics of extracellular polymeric substances (EPS) on silica.
    Tong M; Zhu P; Jiang X; Kim H
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):151-8. PubMed ID: 21652179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications.
    Chen KL; Elimelech M
    Environ Sci Technol; 2008 Oct; 42(20):7607-14. PubMed ID: 18983082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles.
    Nason JA; McDowell SA; Callahan TW
    J Environ Monit; 2012 Jul; 14(7):1885-92. PubMed ID: 22495395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiwalled carbon nanotube deposition on model environmental surfaces.
    Chang X; Bouchard DC
    Environ Sci Technol; 2013 Sep; 47(18):10372-80. PubMed ID: 23957606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups.
    Chi FH; Amy GL
    J Colloid Interface Sci; 2004 Jun; 274(2):380-91. PubMed ID: 15144809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting the effects of natural organic matter on antimicrobial activity of Ag
    Liu Y; Yang T; Wang L; Huang Z; Li J; Cheng H; Jiang J; Pang S; Qi J; Ma J
    Water Res; 2018 Nov; 145():12-20. PubMed ID: 30118974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The attachment of colloidal particles to environmentally relevant surfaces and the effect of particle shape.
    McNew CP; Kananizadeh N; Li Y; LeBoeuf EJ
    Chemosphere; 2017 Feb; 168():65-79. PubMed ID: 27776240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.
    Xia T; Fortner JD; Zhu D; Qi Z; Chen W
    Environ Sci Technol; 2015 Oct; 49(19):11468-75. PubMed ID: 26348539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter.
    Chowdhury I; Mansukhani ND; Guiney LM; Hersam MC; Bouchard D
    Environ Sci Technol; 2015 Sep; 49(18):10886-93. PubMed ID: 26280799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the properties of standard soil and aquatic fulvic and humic acids based on the data of differential absorbance and fluorescence spectroscopy.
    Liu S; Benedetti MF; Han W; Korshin GV
    Chemosphere; 2020 Dec; 261():128189. PubMed ID: 33113651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.
    Zhang W; Rattanaudompol US; Li H; Bouchard D
    Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles.
    Thio BJ; Zhou D; Keller AA
    J Hazard Mater; 2011 May; 189(1-2):556-63. PubMed ID: 21429667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces.
    Jiang X; Tong M; Li H; Yang K
    J Colloid Interface Sci; 2010 Oct; 350(2):427-34. PubMed ID: 20673672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.