BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25027050)

  • 1. Seed germination of Agave species as influenced by substrate water potential.
    Ramírez-Tobías HM; Peña-Valdivia CB; Trejo C; Aguirre R JR; Vaquera H H
    Biol Res; 2014 Apr; 47(1):11. PubMed ID: 25027050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological niche and bet-hedging strategies for Triodia (R.Br.) seed germination.
    Lewandrowski W; Erickson TE; Dalziell EL; Stevens JC
    Ann Bot; 2018 Feb; 121(2):367-375. PubMed ID: 29293867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germination responses to temperature and water potential in Jatropha curcas seeds: a hydrotime model explains the difference between dormancy expression and dormancy induction at different incubation temperatures.
    Windauer LB; Martinez J; Rapoport D; Wassner D; Benech-Arnold R
    Ann Bot; 2012 Jan; 109(1):265-73. PubMed ID: 21917817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The risk-takers and -avoiders: germination sensitivity to water stress in an arid zone with unpredictable rainfall.
    Duncan C; Schultz NL; Good MK; Lewandrowski W; Cook S
    AoB Plants; 2019 Dec; 11(6):plz066. PubMed ID: 31777652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming seed dormancy using gibberellic acid and the performance of young Syagrus coronata plants under severe drought stress and recovery.
    Medeiros MJ; Oliveira MT; Willadino L; Santos MG
    Plant Physiol Biochem; 2015 Dec; 97():278-86. PubMed ID: 26509497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of seed germination to water stress in high-altitude populations of a threatened palm species.
    Dos Santos AS; Braz MIG; Dos Santos de Barros C; de Cássia Quitete Portela R; de Mattos EA
    Plant Biol (Stuttg); 2023 Jun; 25(4):593-602. PubMed ID: 37029605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seed dormancy of Ochradenus baccatus (Resedaceae), a shrubby species from Arabian desert regions.
    Bhatt A; Pérez-García F
    Rev Biol Trop; 2016 Sep; 64(3):965-74. PubMed ID: 29461763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions.
    Davis SC; LeBauer DS; Long SP
    J Exp Bot; 2014 Jul; 65(13):3471-8. PubMed ID: 24744431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate shapes the seed germination niche of temperate flowering plants: a meta-analysis of European seed conservation data.
    Carta A; Fernández-Pascual E; Gioria M; Müller JV; Rivière S; Rosbakh S; Saatkamp A; Vandelook F; Mattana E
    Ann Bot; 2022 Jul; 129(7):775-786. PubMed ID: 35303062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germination responses to water potential in neotropical pioneers suggest large-seeded species take more risks.
    Daws MI; Crabtree LM; Dalling JW; Mullins CE; Burslem DF
    Ann Bot; 2008 Dec; 102(6):945-51. PubMed ID: 18840874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germination of Acacia harpophylla (Brigalow) seeds in relation to soil water potential: implications for rehabilitation of a threatened ecosystem.
    Arnold S; Kailichova Y; Baumgartl T
    PeerJ; 2014; 2():e268. PubMed ID: 24795847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germination of Styrax camporum Pohl. seeds in response to substrate types, moisture contents and the seed morphology.
    Simão E; Nakamura AT; Takaki M
    An Acad Bras Cienc; 2013 Mar; 85(1):295-306. PubMed ID: 23460429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and use of bioenergy feedstocks for semi-arid and arid lands.
    Cushman JC; Davis SC; Yang X; Borland AM
    J Exp Bot; 2015 Jul; 66(14):4177-93. PubMed ID: 25873672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate warming could shift the timing of seed germination in alpine plants.
    Mondoni A; Rossi G; Orsenigo S; Probert RJ
    Ann Bot; 2012 Jul; 110(1):155-64. PubMed ID: 22596094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland.
    Hu XW; Fan Y; Baskin CC; Baskin JM; Wang YR
    Am J Bot; 2015 May; 102(5):649-60. PubMed ID: 26022479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental climate warming enforces seed dormancy in South African Proteaceae but seedling drought resilience exceeds summer drought periods.
    Arnolds JL; Musil CF; Rebelo AG; Krüger GH
    Oecologia; 2015 Apr; 177(4):1103-16. PubMed ID: 25502439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal thresholds for seed germination in winter annual forbs from old-field Mediterranean landscapes.
    Frischie S; Fernández-Pascual E; Ramirez CG; Toorop P; González MH; Jiménez-Alfaro B
    Plant Biol (Stuttg); 2019 May; 21(3):449-457. PubMed ID: 29788554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the influence of temperature and water potential on seed germination of
    Xiao H; Yang H; Monaco T; Song Q; Rong Y
    PeerJ; 2020; 8():e8866. PubMed ID: 32292650
    [No Abstract]   [Full Text] [Related]  

  • 19. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre- and post-dispersal temperatures.
    Bernareggi G; Carbognani M; Mondoni A; Petraglia A
    Ann Bot; 2016 Sep; 118(3):529-39. PubMed ID: 27390354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of environmental limitations on production of Agave americana L. grown as a biofuel crop in semi-arid regions.
    Niechayev NA; Jones AM; Rosenthal DM; Davis SC
    J Exp Bot; 2019 Nov; 70(22):6549-6559. PubMed ID: 30597061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.