These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25027204)

  • 1. Concentration gradient focusing and separation in a silica nanofluidic channel with a non-uniform electroosmotic flow.
    Hsu WL; Harvie DJ; Davidson MR; Jeong H; Goldys EM; Inglis DW
    Lab Chip; 2014 Sep; 14(18):3539-49. PubMed ID: 25027204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoelectric focusing in a silica nanofluidic channel: effects of electromigration and electroosmosis.
    Hsu WL; Inglis DW; Startsev MA; Goldys EM; Davidson MR; Harvie DJ
    Anal Chem; 2014 Sep; 86(17):8711-8. PubMed ID: 25098739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels.
    Hsu WL; Inglis DW; Jeong H; Dunstan DE; Davidson MR; Goldys EM; Harvie DJ
    Langmuir; 2014 May; 30(18):5337-48. PubMed ID: 24725102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of electroosmotic flow through nanoporous self-assembled arrays.
    Bell K; Gomes M; Nazemifard N
    Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanochannel pH gradient electrofocusing of proteins.
    Startsev MA; Inglis DW; Baker MS; Goldys EM
    Anal Chem; 2013 Aug; 85(15):7133-8. PubMed ID: 23819922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoresis of deformable polyelectrolytes in a nanofluidic channel.
    Tseng S; Lin CY; Hsu JP; Yeh LH
    Langmuir; 2013 Feb; 29(7):2446-54. PubMed ID: 23379259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AC Electroosmotic Pumping in Nanofluidic Funnels.
    Kneller AR; Haywood DG; Jacobson SC
    Anal Chem; 2016 Jun; 88(12):6390-4. PubMed ID: 27230495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable ionic conductance in a pH-regulated gated nanochannel.
    Ma Y; Xue S; Hsu SC; Yeh LH; Qian S; Tan H
    Phys Chem Chem Phys; 2014 Oct; 16(37):20138-46. PubMed ID: 25135162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel.
    Li F; Jian Y; Chang L; Zhao G; Yang L
    Colloids Surf B Biointerfaces; 2016 Nov; 147():234-241. PubMed ID: 27518455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-voltage efficient electroosmotic pumps with ultrathin silica nanoporous membrane.
    Yang Q; Su B; Wang Y; Wu W
    Electrophoresis; 2019 Aug; 40(16-17):2149-2156. PubMed ID: 30916400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of transport properties in electric field gradient focusing.
    Humble PH; Harb JN; Tolley HD; Woolley AT; Farnsworth PB; Lee ML
    J Chromatogr A; 2007 Aug; 1160(1-2):311-9. PubMed ID: 17481644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of viscoelectric effect on diffusioosmotic transport in nanochannel.
    Mehta SK; Mondal PK
    Electrophoresis; 2023 Jan; 44(1-2):44-52. PubMed ID: 35775948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.