These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25027723)

  • 21. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives.
    Vees CA; Neuendorf CS; Pflügl S
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):753-787. PubMed ID: 32894379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525.
    Sarchami T; Johnson E; Rehmann L
    Bioresour Technol; 2016 May; 208():73-80. PubMed ID: 26922315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum.
    Malaviya A; Jang YS; Lee SY
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1485-94. PubMed ID: 22052388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01.
    Gottumukkala LD; Parameswaran B; Valappil SK; Mathiyazhakan K; Pandey A; Sukumaran RK
    Bioresour Technol; 2013 Oct; 145():182-7. PubMed ID: 23465538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges.
    Azambuja SPH; Goldbeck R
    World J Microbiol Biotechnol; 2020 Mar; 36(3):48. PubMed ID: 32152786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fermentative production of butanol: Perspectives on synthetic biology.
    Nanda S; Golemi-Kotra D; McDermott JC; Dalai AK; Gökalp I; Kozinski JA
    N Biotechnol; 2017 Jul; 37(Pt B):210-221. PubMed ID: 28286167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117.
    Yan Y; Basu A; Li T; He J
    Biotechnol Bioeng; 2016 Aug; 113(8):1702-10. PubMed ID: 26803924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One hundred years of clostridial butanol fermentation.
    Moon HG; Jang YS; Cho C; Lee J; Binkley R; Lee SY
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26738754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass.
    Huang H; Liu H; Gan YR
    Biotechnol Adv; 2010; 28(5):651-7. PubMed ID: 20580810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.
    Baral NR; Shah A
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9151-72. PubMed ID: 25267161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Butanol production from renewable biomass by clostridia.
    Jang YS; Malaviya A; Cho C; Lee J; Lee SY
    Bioresour Technol; 2012 Nov; 123():653-63. PubMed ID: 22939593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon.
    Woo JE; Jang YS
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8283-8292. PubMed ID: 31396679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Renewable feedstocks for biobutanol production by fermentation.
    Procentese A; Raganati F; Olivieri G; Russo ME; de la Feld M; Marzocchella A
    N Biotechnol; 2017 Oct; 39(Pt A):135-140. PubMed ID: 27989957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous saccharification and fermentation of hemicellulose to butanol by a non-sporulating Clostridium species.
    Li T; He J
    Bioresour Technol; 2016 Nov; 219():430-438. PubMed ID: 27513648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts.
    Xin F; Dong W; Jiang Y; Ma J; Zhang W; Wu H; Zhang M; Jiang M
    Crit Rev Biotechnol; 2018 Jun; 38(4):529-540. PubMed ID: 28911245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering E. coli to synthesize butanol.
    Abdelaal AS; Yazdani SS
    Biochem Soc Trans; 2022 Apr; 50(2):867-876. PubMed ID: 35356968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of new metabolic engineering tools for Clostridium acetobutylicum.
    Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5823-37. PubMed ID: 24816621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of availability of a high throughput screening method for predicting butanol solvent -producing ability of Clostridium beijerinckii.
    Su H; Zhu J; Liu G; Tan F
    BMC Microbiol; 2016 Jul; 16(1):160. PubMed ID: 27448996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone-butanol-ethanol fermentation using an empirical model.
    Shukor H; Al-Shorgani NKN; Abdeshahian P; Hamid AA; Anuar N; Rahman NA; Kalil MS
    Bioresour Technol; 2014 Oct; 170():565-573. PubMed ID: 25171212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering strategies for butanol production in Escherichia coli.
    Ferreira S; Pereira R; Wahl SA; Rocha I
    Biotechnol Bioeng; 2020 Aug; 117(8):2571-2587. PubMed ID: 32374413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.