These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25027812)

  • 41. Genome Editing of Rat.
    Kaneko T
    Methods Mol Biol; 2017; 1630():101-108. PubMed ID: 28643253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity.
    Li R; Fang L; Tan S; Yu M; Li X; He S; Wei Y; Li G; Jiang J; Wu M
    Cell Res; 2016 Dec; 26(12):1273-1287. PubMed ID: 27857054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification.
    Pu J; Frescas D; Zhang B; Feng J
    Exp Biol Med (Maywood); 2015 Aug; 240(8):1065-70. PubMed ID: 25956682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting.
    Zhou J; Wang J; Shen B; Chen L; Su Y; Yang J; Zhang W; Tian X; Huang X
    FEBS J; 2014 Apr; 281(7):1717-25. PubMed ID: 24494965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Research progress of CRISPR-Cas9 system for gene therapy].
    Zhan C; Xia X
    Sheng Wu Gong Cheng Xue Bao; 2016 Jul; 32(7):861-869. PubMed ID: 29019208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.
    Jao LE; Wente SR; Chen W
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13904-9. PubMed ID: 23918387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.
    Liu D; Awazu A; Sakuma T; Yamamoto T; Sakamoto N
    Dev Growth Differ; 2019 Aug; 61(6):378-388. PubMed ID: 31359433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria.
    Zhang Y; Yang J; Bai G
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Advances in genetic modification technologies].
    Zhang B; Sun Q; Li H
    Sheng Wu Gong Cheng Xue Bao; 2015 Aug; 31(8):1162-74. PubMed ID: 26762038
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Livestock Gene Editing by One-step Embryo Manipulation.
    Navarro-Serna S; Vilarino M; Park I; Gadea J; Ross PJ
    J Equine Vet Sci; 2020 Jun; 89():103025. PubMed ID: 32563448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome editing using artificial site-specific nucleases in zebrafish.
    Hisano Y; Ota S; Kawahara A
    Dev Growth Differ; 2014 Jan; 56(1):26-33. PubMed ID: 24117409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation.
    Edvardsen RB; Leininger S; Kleppe L; Skaftnesmo KO; Wargelius A
    PLoS One; 2014; 9(9):e108622. PubMed ID: 25254960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.