These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25028011)

  • 1. Tensor hypercontracted ppRPA: reducing the cost of the particle-particle random phase approximation from O(r(6)) to O(r(4)).
    Shenvi N; van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 Jul; 141(2):024119. PubMed ID: 25028011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate and efficient calculation of excitation energies with the active-space particle-particle random phase approximation.
    Zhang D; Yang W
    J Chem Phys; 2016 Oct; 145(14):144105. PubMed ID: 27782522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r(4)) scaling.
    Shenvi N; van Aggelen H; Yang Y; Yang W; Schwerdtfeger C; Mazziotti D
    J Chem Phys; 2013 Aug; 139(5):054110. PubMed ID: 23927246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction.
    Song C; Martínez TJ
    J Chem Phys; 2017 Jan; 146(3):034104. PubMed ID: 28109237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quartic scaling second-order approximate coupled cluster singles and doubles via tensor hypercontraction: THC-CC2.
    Hohenstein EG; Kokkila SI; Parrish RM; Martínez TJ
    J Chem Phys; 2013 Mar; 138(12):124111. PubMed ID: 23556713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.
    Zhang D; Su NQ; Yang W
    J Phys Chem Lett; 2017 Jul; 8(14):3223-3227. PubMed ID: 28654275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmark tests and spin adaptation for the particle-particle random phase approximation.
    Yang Y; van Aggelen H; Steinmann SN; Peng D; Yang W
    J Chem Phys; 2013 Nov; 139(17):174110. PubMed ID: 24206290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Scaling Self-Consistent Minimization of a Density Matrix Based Random Phase Approximation Method in the Atomic Orbital Space.
    Graf D; Beuerle M; Ochsenfeld C
    J Chem Theory Comput; 2019 Aug; 15(8):4468-4477. PubMed ID: 31368702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kohn-Sham band gaps and potentials of solids from the optimised effective potential method within the random phase approximation.
    Klimeš J; Kresse G
    J Chem Phys; 2014 Feb; 140(5):054516. PubMed ID: 24511961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions.
    Hohenstein EG; Parrish RM; Sherrill CD; Martínez TJ
    J Chem Phys; 2012 Dec; 137(22):221101. PubMed ID: 23248980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensor hypercontraction. II. Least-squares renormalization.
    Parrish RM; Hohenstein EG; Martínez TJ; Sherrill CD
    J Chem Phys; 2012 Dec; 137(22):224106. PubMed ID: 23248986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory.
    Hohenstein EG; Parrish RM; Martínez TJ
    J Chem Phys; 2012 Jul; 137(4):044103. PubMed ID: 22852593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles.
    Peng D; Steinmann SN; van Aggelen H; Yang W
    J Chem Phys; 2013 Sep; 139(10):104112. PubMed ID: 24050333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations.
    Geyer T; Winter U
    J Chem Phys; 2009 Mar; 130(11):114905. PubMed ID: 19317564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power series expansion of the random phase approximation correlation energy: The role of the third- and higher-order contributions.
    Lu D; Nguyen HV; Galli G
    J Chem Phys; 2010 Oct; 133(15):154110. PubMed ID: 20969373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensor-Hypercontracted MP2 First Derivatives: Runtime and Memory Efficient Computation of Hyperfine Coupling Constants.
    Bangerter FH; Glasbrenner M; Ochsenfeld C
    J Chem Theory Comput; 2022 Sep; 18(9):5233-5245. PubMed ID: 35943450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange.
    Moussa JE
    J Chem Phys; 2014 Jan; 140(1):014107. PubMed ID: 24410221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.