These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25028037)

  • 1. Dynamic mean field theory for lattice gas models of fluids confined in porous materials: higher order theory based on the Bethe-Peierls and path probability method approximations.
    Edison JR; Monson PA
    J Chem Phys; 2014 Jul; 141(2):024706. PubMed ID: 25028037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.
    Edison JR; Monson PA
    J Chem Phys; 2013 Jun; 138(23):234709. PubMed ID: 23802978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
    Edison JR; Monson PA
    Langmuir; 2013 Nov; 29(45):13808-20. PubMed ID: 24102541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the Bethe-Peierls approximation to a lattice-gas model of adsorption on mesoporous materials.
    Salazar R; Gelb LD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041502. PubMed ID: 15903672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations.
    Sarkisov L; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011202. PubMed ID: 11800685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic mean field theory of condensation and evaporation processes for fluids in porous materials: application to partial drying and drying.
    Edison JR; Monson PA
    Faraday Discuss; 2010; 146():167-84; discussion 195-215, 395-403. PubMed ID: 21043421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte-Carlo multiscale simulation study of argon adsorption/desorption hysteresis in mesoporous heterogeneous tubular pores like MCM-41 or oxidized porous silicon.
    Puibasset J
    Langmuir; 2009 Jan; 25(2):903-11. PubMed ID: 19063620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behavior and dynamics of fluids in mesoporous glasses.
    Woo HJ; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041207. PubMed ID: 12786353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of the one-dimensional parallel Kawasaki model: exact solution and mean-field approximations.
    Pazzona FG; Demontis P; Suffritti GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022118. PubMed ID: 25215700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic aspects of mercury porosimetry: a lattice model study.
    Porcheron F; Monson PA
    Langmuir; 2005 Mar; 21(7):3179-86. PubMed ID: 15780002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the influence of side stream and ink bottle structures on adsorption/desorption dynamics of fluids in long pores.
    Schneider D; Valiullin R; Monson PA
    Langmuir; 2015 Jan; 31(1):188-98. PubMed ID: 25486536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory.
    Martinez A; Castro M; McCabe C; Gil-Villegas A
    J Chem Phys; 2007 Feb; 126(7):074707. PubMed ID: 17328627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior.
    Kierlik E; Monson PA; Rosinberg ML; Sarkisov L; Tarjus G
    Phys Rev Lett; 2001 Jul; 87(5):055701. PubMed ID: 11497783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids.
    Sanghi T; Aluru NR
    J Chem Phys; 2013 Mar; 138(12):124109. PubMed ID: 23556711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and velocity of field-driven solid-on-solid interfaces: analytic approximations and numerical results.
    Rikvold PA; Kolesik M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066116. PubMed ID: 12513356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting metastable states within the adsorption/desorption hysteresis loop: A molecular simulation study of confinement in heterogeneous pores.
    Puibasset J
    J Chem Phys; 2010 Sep; 133(10):104701. PubMed ID: 20849180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding adsorption and desorption processes in mesoporous materials with independent disordered channels.
    Naumov S; Valiullin R; Kärger J; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031607. PubMed ID: 19905123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
    Buyukdagli S; Achim CV; Ala-Nissila T
    J Chem Phys; 2012 Sep; 137(10):104902. PubMed ID: 22979885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model.
    Monson PA
    Langmuir; 2008 Nov; 24(21):12295-302. PubMed ID: 18834164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.