These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25028486)

  • 1. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.
    Brus L
    Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Discrete Interaction Model/Quantum Mechanical Method for Simulating Plasmon-Enhanced Two-Photon Absorption.
    Hu Z; Jensen L
    J Chem Theory Comput; 2018 Nov; 14(11):5896-5903. PubMed ID: 30351932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport.
    Song P; Nordlander P; Gao S
    J Chem Phys; 2011 Feb; 134(7):074701. PubMed ID: 21341863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: dynamical embedding: correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region.
    Gao Y; Neuhauser D
    J Chem Phys; 2013 May; 138(18):181105. PubMed ID: 23676021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods.
    Bigelow NW; Vaschillo A; Iberi V; Camden JP; Masiello DJ
    ACS Nano; 2012 Aug; 6(8):7497-504. PubMed ID: 22849410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing.
    Zhang Y; May V
    J Chem Phys; 2015 Jun; 142(22):224702. PubMed ID: 26071722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the ultraviolet spectrum of liquid water from model calculations.
    Cabral do Couto P; Chipman DM
    J Chem Phys; 2010 Jun; 132(24):244307. PubMed ID: 20590193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Effects in the Coupling of Plasmon Resonance of Metal Nanoparticles with Excited Gold Clusters.
    Stamplecoskie KG; Kamat PV
    J Phys Chem Lett; 2015 May; 6(10):1870-5. PubMed ID: 26263262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption.
    Morton SM; Jensen L
    J Chem Phys; 2011 Oct; 135(13):134103. PubMed ID: 21992278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence of a Plasmonic Molecule.
    Huang D; Byers CP; Wang LY; Hoggard A; Hoener B; Dominguez-Medina S; Chen S; Chang WS; Landes CF; Link S
    ACS Nano; 2015 Jul; 9(7):7072-9. PubMed ID: 26165983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.
    Mullin J; Schatz GC
    J Phys Chem A; 2012 Mar; 116(8):1931-8. PubMed ID: 22283122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the linear response and scattering of an interacting molecule-metal system.
    Masiello DJ; Schatz GC
    J Chem Phys; 2010 Feb; 132(6):064102. PubMed ID: 20151728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.