These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25028499)

  • 1. Proteome-wide remodeling of protein location and function by stress.
    Lee K; Sung MK; Kim J; Kim K; Byun J; Paik H; Kim B; Huh WK; Ideker T
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):E3157-66. PubMed ID: 25028499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection.
    Chong YT; Cox MJ; Andrews B
    Adv Exp Med Biol; 2012; 736():169-78. PubMed ID: 22161327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial perspectives in the redox code-Mass spectrometric proteomics studies of moonlighting proteins.
    Pinto G; Radulovic M; Godovac-Zimmermann J
    Mass Spectrom Rev; 2018 Jan; 37(1):81-100. PubMed ID: 27186965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the proteome of cellular fractions: focus on secreted proteins.
    Latosinska A; Frantzi M; Mullen W; Vlahou A; Makridakis M
    Methods Mol Biol; 2015; 1243():29-41. PubMed ID: 25384738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase.
    Jiang XS; Dai J; Sheng QH; Zhang L; Xia QC; Wu JR; Zeng R
    Mol Cell Proteomics; 2005 Jan; 4(1):12-34. PubMed ID: 15507458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-wide discovery of mislocated proteins in cancer.
    Lee K; Byun K; Hong W; Chuang HY; Pack CG; Bayarsaikhan E; Paek SH; Kim H; Shin HY; Ideker T; Lee B
    Genome Res; 2013 Aug; 23(8):1283-94. PubMed ID: 23674306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity.
    van Zuylen WJ; Doyon P; Clément JF; Khan KA; D'Ambrosio LM; Dô F; St-Amant-Verret M; Wissanji T; Emery G; Gingras AC; Meloche S; Servant MJ
    PLoS Pathog; 2012; 8(7):e1002747. PubMed ID: 22792062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of predicted subcellular localizations of human proteins.
    Chaturvedi NK; Mir RA; Band V; Joshi SS; Guda C
    BMC Res Notes; 2014 Dec; 7():912. PubMed ID: 25510246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps.
    Jung YH; Jeong SH; Kim SH; Singh R; Lee JE; Cho YS; Agrawal GK; Rakwal R; Jwa NS
    J Proteome Res; 2008 Dec; 7(12):5187-210. PubMed ID: 18986194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single fixation protocol for proteome-wide immunofluorescence localization studies.
    Stadler C; Skogs M; Brismar H; Uhlén M; Lundberg E
    J Proteomics; 2010 Apr; 73(6):1067-78. PubMed ID: 19896565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells.
    Pinto G; Alhaiek AA; Godovac-Zimmermann J
    Expert Rev Proteomics; 2015 Feb; 12(1):61-74. PubMed ID: 25591448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved mapping of proteome turnover dynamics with subcellular precision.
    Yuan F; Li Y; Zhou X; Meng P; Zou P
    Nat Commun; 2023 Nov; 14(1):7217. PubMed ID: 37940635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.
    Jadot M; Boonen M; Thirion J; Wang N; Xing J; Zhao C; Tannous A; Qian M; Zheng H; Everett JK; Moore DF; Sleat DE; Lobel P
    Mol Cell Proteomics; 2017 Feb; 16(2):194-212. PubMed ID: 27923875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pTARGET [corrected] a new method for predicting protein subcellular localization in eukaryotes.
    Guda C; Subramaniam S
    Bioinformatics; 2005 Nov; 21(21):3963-9. PubMed ID: 16144808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2006 Aug; 347(1):150-7. PubMed ID: 16808903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization-specific distributions of protein pI in human proteome are governed by local pH and membrane charge.
    Kurotani A; Tokmakov AA; Sato KI; Stefanov VE; Yamada Y; Sakurai T
    BMC Mol Cell Biol; 2019 Aug; 20(1):36. PubMed ID: 31429701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-Nearest Neighbor classifiers.
    Chou KC; Shen HB
    J Proteome Res; 2006 Aug; 5(8):1888-97. PubMed ID: 16889410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organelle identification and proteomics in plant cells.
    Mo B; Tse YC; Jiang L
    Trends Biotechnol; 2003 Aug; 21(8):331-2. PubMed ID: 12902167
    [No Abstract]   [Full Text] [Related]  

  • 20. Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction.
    Shen HB; Yang J; Chou KC
    Amino Acids; 2007 Jul; 33(1):57-67. PubMed ID: 17235453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.