These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Zhang E; Zhang C; Su Y; Cheng T; Shi C Drug Discov Today; 2011 Feb; 16(3-4):140-6. PubMed ID: 21182981 [TBL] [Abstract][Full Text] [Related]
23. Metabolic alterations in cancer cells and therapeutic implications. Hammoudi N; Ahmed KB; Garcia-Prieto C; Huang P Chin J Cancer; 2011 Aug; 30(8):508-25. PubMed ID: 21801600 [TBL] [Abstract][Full Text] [Related]
24. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Fonseca SB; Pereira MP; Mourtada R; Gronda M; Horton KL; Hurren R; Minden MD; Schimmer AD; Kelley SO Chem Biol; 2011 Apr; 18(4):445-53. PubMed ID: 21513881 [TBL] [Abstract][Full Text] [Related]
25. Targeting of cancer energy metabolism. Rodríguez-Enríquez S; Marín-Hernández A; Gallardo-Pérez JC; Carreño-Fuentes L; Moreno-Sánchez R Mol Nutr Food Res; 2009 Jan; 53(1):29-48. PubMed ID: 19123180 [TBL] [Abstract][Full Text] [Related]
26. Targeting cancer cell mitochondria as a therapeutic approach: recent updates. Cui Q; Wen S; Huang P Future Med Chem; 2017 Jun; 9(9):929-949. PubMed ID: 28636410 [TBL] [Abstract][Full Text] [Related]
27. IAP antagonists: promising candidates for cancer therapy. Mannhold R; Fulda S; Carosati E Drug Discov Today; 2010 Mar; 15(5-6):210-9. PubMed ID: 20096368 [TBL] [Abstract][Full Text] [Related]
28. Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways. Li N; Zhang CX; Wang XX; Zhang L; Ma X; Zhou J; Ju RJ; Li XY; Zhao WY; Lu WL Biomaterials; 2013 Apr; 34(13):3366-80. PubMed ID: 23410681 [TBL] [Abstract][Full Text] [Related]
29. Oxidative Stress and Reprogramming of Mitochondrial Function and Dynamics as Targets to Modulate Cancer Cell Behavior and Chemoresistance. Falone S; Lisanti MP; Domenicotti C Oxid Med Cell Longev; 2019; 2019():4647807. PubMed ID: 31915507 [No Abstract] [Full Text] [Related]
30. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551 [TBL] [Abstract][Full Text] [Related]
31. A Novel Multiple-Read Screen for Metabolically Active Compounds Based on a Genetically Encoded FRET Sensor for ATP. Zhao Z; Rajagopalan R; Zweifach A SLAS Discov; 2018 Oct; 23(9):907-918. PubMed ID: 29898642 [TBL] [Abstract][Full Text] [Related]
33. Apoptosis and Anti-cancer Drug Discovery: The Power of Medicinal Fungi and Plants. Wong JH; Sze SCW; Ng TB; Cheung RCF; Tam C; Zhang KY; Dan X; Chan YS; Cho WC; Ng CCW; Waye MMY; Liang W; Zhang J; Yang J; Ye X; Lin J; Ye X; Wang H; Liu F; Chan DW; Ngan HYS; Sha O; Li G; Tse R; Tse TF; Chan H Curr Med Chem; 2018; 25(40):5613-5630. PubMed ID: 28730971 [TBL] [Abstract][Full Text] [Related]
34. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Zhang Y; Yang JM Cancer Biol Ther; 2013 Feb; 14(2):81-9. PubMed ID: 23192270 [TBL] [Abstract][Full Text] [Related]
35. Targeting tumor glycolysis by a mitotropic agent. Ganapathy-Kanniappan S Expert Opin Ther Targets; 2016; 20(1):1-5. PubMed ID: 26420565 [TBL] [Abstract][Full Text] [Related]
36. Targeting survivin in cancer: the cell-signalling perspective. Kanwar JR; Kamalapuram SK; Kanwar RK Drug Discov Today; 2011 Jun; 16(11-12):485-94. PubMed ID: 21511051 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial function as an emerging 'target of interest' for cancer treatment. Sausville EA Curr Opin Investig Drugs; 2009 Jun; 10(6):523-5. PubMed ID: 19513940 [No Abstract] [Full Text] [Related]
38. Key drivers of biomedical innovation in cancer drug discovery. Huber MA; Kraut N EMBO Mol Med; 2015 Jan; 7(1):12-6. PubMed ID: 25422355 [TBL] [Abstract][Full Text] [Related]
39. Do intra-tumor alkaline micro-regions represent additional therapeutically privileged sites? Anderson KM; Jajeh A; Guinan P; Tsui P; Rubenstein M Med Hypotheses; 2008; 70(6):1193-6. PubMed ID: 18364249 [TBL] [Abstract][Full Text] [Related]
40. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation. Marín-Hernández A; Gallardo-Pérez JC; López-Ramírez SY; García-García JD; Rodríguez-Zavala JS; Ruiz-Ramírez L; Gracia-Mora I; Zentella-Dehesa A; Sosa-Garrocho M; Macías-Silva M; Moreno-Sánchez R; Rodríguez-Enríquez S Arch Toxicol; 2012 May; 86(5):753-66. PubMed ID: 22349057 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]