These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25028876)

  • 1. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method.
    Chiba M; Miyazaki M; Ishiwata S
    Biophys J; 2014 Jul; 107(2):346-354. PubMed ID: 25028876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
    Chen S; Sun ZG; Murrell MP
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.
    Nishimura K; Suzuki H; Toyota T; Yomo T
    J Colloid Interface Sci; 2012 Jun; 376(1):119-25. PubMed ID: 22444482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population analysis of structural properties of giant liposomes by flow cytometry.
    Nishimura K; Hosoi T; Sunami T; Toyota T; Fujinami M; Oguma K; Matsuura T; Suzuki H; Yomo T
    Langmuir; 2009 Sep; 25(18):10439-43. PubMed ID: 19670878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles.
    Moga A; Yandrapalli N; Dimova R; Robinson T
    Chembiochem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31529570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octanol-assisted liposome assembly on chip.
    Deshpande S; Caspi Y; Meijering AE; Dekker C
    Nat Commun; 2016 Jan; 7():10447. PubMed ID: 26794442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of Living Cells within Giant Phospholipid Liposomes Formed by the Inverse-Emulsion Technique.
    Chowdhuri S; Cole CM; Devaraj NK
    Chembiochem; 2016 May; 17(10):886-9. PubMed ID: 26919463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins.
    Nishigami M; Mori T; Tomita M; Takiguchi K; Tsumoto K
    Colloids Surf B Biointerfaces; 2017 Jul; 155():248-256. PubMed ID: 28432958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Method for the Creation of a Bacteria-Sized Unilamellar Liposome with Different Proteins Localized to the Respective Sides of the Membrane.
    Noba K; Yoshimoto S; Tanaka Y; Yokoyama T; Matsuura T; Hori K
    ACS Synth Biol; 2023 May; 12(5):1437-1446. PubMed ID: 37155350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Giant Vesicles Encapsulating Microspheres by Centrifugation of a Water-in-oil Emulsion.
    Natsume Y; Wen HI; Zhu T; Itoh K; Sheng L; Kurihara K
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroformation of liposomes and phytosomes using copper electrode.
    Behuria HG; Biswal BK; Sahu SK
    J Liposome Res; 2021 Sep; 31(3):255-266. PubMed ID: 32703044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adding glycolipid functionality to model membranes--phase behaviour of a synthetic glycolipid in a phospholipid membrane.
    Migas UM; Abbey L; Velasco-Torrijos T; McManus JJ
    Soft Matter; 2014 Jun; 10(22):3978-83. PubMed ID: 24733306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the lamellarity of giant lipid vesicles with differential interference contrast microscopy.
    McPhee CI; Zoriniants G; Langbein W; Borri P
    Biophys J; 2013 Sep; 105(6):1414-20. PubMed ID: 24047993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encapsulation efficiency measured on single small unilamellar vesicles.
    Lohse B; Bolinger PY; Stamou D
    J Am Chem Soc; 2008 Nov; 130(44):14372-3. PubMed ID: 18842043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Access to Giant Unilamellar Liposomes with Upper Size Control: Membrane-Gated, Gel-Assisted Lipid Hydration.
    Liu Z; Cui J; Zhan W
    Langmuir; 2020 Nov; 36(44):13193-13200. PubMed ID: 33125237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions.
    Wang T; Deng Y; Geng Y; Gao Z; Zou J; Wang Z
    Biochim Biophys Acta; 2006 Feb; 1758(2):222-31. PubMed ID: 16563340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.