These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25029074)

  • 1. The natural product citral can cause significant damage to the hyphal cell walls of Magnaporthe grisea.
    Li RY; Wu XM; Yin XH; Liang JN; Li M
    Molecules; 2014 Jul; 19(7):10279-90. PubMed ID: 25029074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea.
    Li RY; Wu XM; Yin XH; Long YH; Li M
    Pestic Biochem Physiol; 2015 Feb; 118():19-25. PubMed ID: 25752425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of isobavachalcone as a potential drug for rice blast disease caused by the fungus
    Liu X; Li W; Hu B; Wang M; Wang J; Guan L
    J Biomol Struct Dyn; 2019 Aug; 37(13):3399-3409. PubMed ID: 30132740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea.
    Xiong ZQ; Tu XR; Wei SJ; Huang L; Li XH; Lu H; Tu GQ
    Biotechnol Lett; 2013 Sep; 35(9):1475-9. PubMed ID: 23690041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation.
    Zhang L; Sun C
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease.
    Chakraborty M; Mahmud NU; Muzahid ANM; Rabby SMF; Islam T
    PLoS One; 2020; 15(8):e0233665. PubMed ID: 32804955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging antifungal azoles and effects on Magnaporthe grisea.
    Mares D; Romagnoli C; Andreotti E; Forlani G; Guccione S; Vicentini CB
    Mycol Res; 2006 Jun; 110(Pt 6):686-96. PubMed ID: 16769209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea.
    Moreno AB; Martínez Del Pozo A; San Segundo B
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):883-95. PubMed ID: 16557374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural products as sources of new fungicides (V): Design and synthesis of acetophenone derivatives against phytopathogenic fungi in vitro and in vivo.
    Dan WJ; Tuong TM; Wang DC; Li D; Zhang AL; Gao JM
    Bioorg Med Chem Lett; 2018 Sep; 28(17):2861-2864. PubMed ID: 30037493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development.
    Fujikawa T; Kuga Y; Yano S; Yoshimi A; Tachiki T; Abe K; Nishimura M
    Mol Microbiol; 2009 Aug; 73(4):553-70. PubMed ID: 19602150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea.
    Tendulkar SR; Saikumari YK; Patel V; Raghotama S; Munshi TK; Balaram P; Chattoo BB
    J Appl Microbiol; 2007 Dec; 103(6):2331-9. PubMed ID: 18045418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live-cell imaging of tubulin in the filamentous fungus Magnaporthe grisea treated with anti-microtubule and anti-microfilament agents.
    Czymmek KJ; Bourett TM; Shao Y; DeZwaan TM; Sweigard JA; Howard RJ
    Protoplasma; 2005 Apr; 225(1-2):23-32. PubMed ID: 15868210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.
    Soylu EM; Kurt S; Soylu S
    Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the pathogenicity of Magnaporthe grisea by bromophenols, isocitrate lyase inhibitors, from the red alga Odonthalia corymbifera.
    Lee HS; Lee TH; Lee JH; Chae CS; Chung SC; Shin DS; Shin J; Oh KB
    J Agric Food Chem; 2007 Aug; 55(17):6923-8. PubMed ID: 17655246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of citral, eugenol, nerolidol and alpha-terpineol on the ultrastructural changes of Trichophyton mentagrophytes.
    Park MJ; Gwak KS; Yang I; Kim KW; Jeung EB; Chang JW; Choi IG
    Fitoterapia; 2009 Jul; 80(5):290-6. PubMed ID: 19345255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of alternative respiration and target-site mutations on responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides.
    Avila-Adame C; Köller W
    Pest Manag Sci; 2003 Mar; 59(3):303-9. PubMed ID: 12639047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide.
    Yukioka H; Inagaki S; Tanaka R; Katoh K; Miki N; Mizutani A; Masuko M
    Biochim Biophys Acta; 1998 Nov; 1442(2-3):161-9. PubMed ID: 9804939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Fabrication of ZnONPs from Alkalescent Nucleoside Antibiotic to Control Rice Blast: Impact on Pathogen (
    Ahsan T; Li B; Wu Y; Li Z
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural products as sources of new fungicides (IV): Synthesis and biological evaluation of isobutyrophenone analogs as potential inhibitors of class-II fructose-1,6-bisphosphate aldolase.
    Li D; Luong TTM; Dan WJ; Ren Y; Nien HX; Zhang AL; Gao JM
    Bioorg Med Chem; 2018 Jan; 26(2):386-393. PubMed ID: 29248352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.