These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25029189)

  • 21. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion.
    Cheng Z; Du M; Lai H; Zhang N; Sun K
    Nanoscale; 2013 Apr; 5(7):2776-83. PubMed ID: 23429404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.
    Ensikat HJ; Mayser M; Barthlott W
    Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period.
    Gou X; Guo Z
    Langmuir; 2019 Jan; 35(4):1047-1053. PubMed ID: 30621395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct three-dimensional imaging of the buried interfaces between water and superhydrophobic surfaces.
    Luo C; Zheng H; Wang L; Fang H; Hu J; Fan C; Cao Y; Wang J
    Angew Chem Int Ed Engl; 2010 Nov; 49(48):9145-8. PubMed ID: 20931579
    [No Abstract]   [Full Text] [Related]  

  • 28. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of bioinspiration: a general route to superhydrophobic particles.
    Zhang L; Wu J; Wang Y; Long Y; Zhao N; Xu J
    J Am Chem Soc; 2012 Jun; 134(24):9879-81. PubMed ID: 22656181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.
    Puente DW; Baur P
    Pest Manag Sci; 2011 Jul; 67(7):798-806. PubMed ID: 21413140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.
    McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA
    Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peanut leaf inspired multifunctional surfaces.
    Yang S; Ju J; Qiu Y; He Y; Wang X; Dou S; Liu K; Jiang L
    Small; 2014 Jan; 10(2):294-9. PubMed ID: 23908145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2012 Feb; 368(1):584-91. PubMed ID: 22062688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces.
    Zhang X; Tan S; Zhao N; Guo X; Zhang X; Zhang Y; Xu J
    Chemphyschem; 2006 Oct; 7(10):2067-70. PubMed ID: 16941559
    [No Abstract]   [Full Text] [Related]  

  • 37. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces.
    Zhang C; Zhao X; Lei J; Ma Y; Du F
    Soft Matter; 2017 Jan; 13(2):503-513. PubMed ID: 27934995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Super-hydrophobicity fundamentals: implications to biofouling prevention.
    Marmur A
    Biofouling; 2006; 22(1-2):107-15. PubMed ID: 16581675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-inspired fabrication of lotus leaf like membranes as fluorescent sensing materials.
    Heng L; Wang X; Dong Y; Zhai J; Tang BZ; Wei T; Jiang L
    Chem Asian J; 2008 Jun; 3(6):1041-5. PubMed ID: 18446919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect.
    Wu W; Zhu Q; Qing F; Han CC
    Langmuir; 2009 Jan; 25(1):17-20. PubMed ID: 19053621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.