BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25029196)

  • 1. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.
    Ziegler YS; Moresco JJ; Tu PG; Yates JR; Nardulli AM
    PLoS One; 2014; 9(7):e102341. PubMed ID: 25029196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer.
    Maurizio E; Wiśniewski JR; Ciani Y; Amato A; Arnoldo L; Penzo C; Pegoraro S; Giancotti V; Zambelli A; Piazza S; Manfioletti G; Sgarra R
    Mol Cell Proteomics; 2016 Jan; 15(1):109-23. PubMed ID: 26527623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry.
    Leth-Larsen R; Lund R; Hansen HV; Laenkholm AV; Tarin D; Jensen ON; Ditzel HJ
    Mol Cell Proteomics; 2009 Jun; 8(6):1436-49. PubMed ID: 19321434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global characterization of signalling networks associated with tamoxifen resistance in breast cancer.
    Browne BC; Hochgräfe F; Wu J; Millar EK; Barraclough J; Stone A; McCloy RA; Lee CS; Roberts C; Ali NA; Boulghourjian A; Schmich F; Linding R; Farrow L; Gee JM; Nicholson RI; O'Toole SA; Sutherland RL; Musgrove EA; Butt AJ; Daly RJ
    FEBS J; 2013 Nov; 280(21):5237-57. PubMed ID: 23876235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.
    Peng W; Zhang Y; Zhu R; Mechref Y
    Electrophoresis; 2017 Sep; 38(17):2124-2134. PubMed ID: 28523741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer.
    Mitra A; Fillmore RA; Metge BJ; Rajesh M; Xi Y; King J; Ju J; Pannell L; Shevde LA; Samant RS
    Breast Cancer Res; 2008; 10(2):R22. PubMed ID: 18328103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance.
    Sahin O; Fröhlich H; Löbke C; Korf U; Burmester S; Majety M; Mattern J; Schupp I; Chaouiya C; Thieffry D; Poustka A; Wiemann S; Beissbarth T; Arlt D
    BMC Syst Biol; 2009 Jan; 3():1. PubMed ID: 19118495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer.
    Adam PJ; Boyd R; Tyson KL; Fletcher GC; Stamps A; Hudson L; Poyser HR; Redpath N; Griffiths M; Steers G; Harris AL; Patel S; Berry J; Loader JA; Townsend RR; Daviet L; Legrain P; Parekh R; Terrett JA
    J Biol Chem; 2003 Feb; 278(8):6482-9. PubMed ID: 12477722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of transporters associated with Etoposide sensitivity of stomach cancer cell lines and methotrexate sensitivity of breast cancer cell lines by quantitative targeted absolute proteomics.
    Obuchi W; Ohtsuki S; Uchida Y; Ohmine K; Yamori T; Terasaki T
    Mol Pharmacol; 2013 Feb; 83(2):490-500. PubMed ID: 23197647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors.
    Huang H; Groth J; Sossey-Alaoui K; Hawthorn L; Beall S; Geradts J
    Clin Cancer Res; 2005 Jun; 11(12):4357-64. PubMed ID: 15958618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer.
    Wang X; Osada T; Wang Y; Yu L; Sakakura K; Katayama A; McCarthy JB; Brufsky A; Chivukula M; Khoury T; Hsu DS; Barry WT; Lyerly HK; Clay TM; Ferrone S
    J Natl Cancer Inst; 2010 Oct; 102(19):1496-512. PubMed ID: 20852124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomics study of breast cancer cell lines isolated from a single patient: discovery of TIMM17A as a marker for breast cancer.
    Xu X; Qiao M; Zhang Y; Jiang Y; Wei P; Yao J; Gu B; Wang Y; Lu J; Wang Z; Tang Z; Sun Y; Wu W; Shi Q
    Proteomics; 2010 Apr; 10(7):1374-90. PubMed ID: 20198662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells.
    Hochgräfe F; Zhang L; O'Toole SA; Browne BC; Pinese M; Porta Cubas A; Lehrbach GM; Croucher DR; Rickwood D; Boulghourjian A; Shearer R; Nair R; Swarbrick A; Faratian D; Mullen P; Harrison DJ; Biankin AV; Sutherland RL; Raftery MJ; Daly RJ
    Cancer Res; 2010 Nov; 70(22):9391-401. PubMed ID: 20861192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase.
    Bateman NW; Sun M; Hood BL; Flint MS; Conrads TP
    J Proteome Res; 2010 Oct; 9(10):5311-24. PubMed ID: 20681588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9.
    Muñiz Lino MA; Palacios-Rodríguez Y; Rodríguez-Cuevas S; Bautista-Piña V; Marchat LA; Ruíz-García E; Astudillo-de la Vega H; González-Santiago AE; Flores-Pérez A; Díaz-Chávez J; Carlos-Reyes Á; Álvarez-Sánchez E; López-Camarillo C
    J Proteomics; 2014 Dec; 111():198-211. PubMed ID: 24768906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic identification of mitochondrial targets of arginase in human breast cancer.
    Singh R; Avliyakulov NK; Braga M; Haykinson MJ; Martinez L; Singh V; Parveen M; Chaudhuri G; Pervin S
    PLoS One; 2013; 8(11):e79242. PubMed ID: 24223914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcitriol and its analogues enhance the antiproliferative activity of gefitinib in breast cancer cells.
    Segovia-Mendoza M; Díaz L; González-González ME; Martínez-Reza I; García-Quiroz J; Prado-Garcia H; Ibarra-Sánchez MJ; Esparza-López J; Larrea F; García-Becerra R
    J Steroid Biochem Mol Biol; 2015 Apr; 148():122-31. PubMed ID: 25510900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive proteomics and sialiomics of the anti-proliferative activity of safranal on triple negative MDA-MB-231 breast cancer cell lines.
    Zarrineh M; Ashrafian S; Jensen P; Nawrocki A; Ansari AM; Rezadoost H; Ghassempour A; Larsen MR
    J Proteomics; 2022 May; 259():104539. PubMed ID: 35240313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer.
    Zhang D; Tai LK; Wong LL; Chiu LL; Sethi SK; Koay ES
    Mol Cell Proteomics; 2005 Nov; 4(11):1686-96. PubMed ID: 16048908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor-suppressor activity of RRIG1 in breast cancer.
    Zhang G; Brewster A; Guan B; Fan Z; Brown PH; Xu XC
    BMC Cancer; 2011 Jan; 11():32. PubMed ID: 21266059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.