BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25029356)

  • 1. Recycling potential of neodymium: the case of computer hard disk drives.
    Sprecher B; Kleijn R; Kramer GJ
    Environ Sci Technol; 2014 Aug; 48(16):9506-13. PubMed ID: 25029356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.
    Habib K; Parajuly K; Wenzel H
    Environ Sci Technol; 2015 Oct; 49(20):12441-9. PubMed ID: 26351732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets.
    Sprecher B; Xiao Y; Walton A; Speight J; Harris R; Kleijn R; Visser G; Kramer GJ
    Environ Sci Technol; 2014 Apr; 48(7):3951-8. PubMed ID: 24576005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.
    Rademaker JH; Kleijn R; Yang Y
    Environ Sci Technol; 2013 Sep; 47(18):10129-36. PubMed ID: 23909476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neodymium as the main feature of permanent magnets from hard disk drives (HDDs).
    München DD; Veit HM
    Waste Manag; 2017 Mar; 61():372-376. PubMed ID: 28161335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.
    Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O
    Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.
    Habib K; Schibye PK; Vestbø AP; Dall O; Wenzel H
    Environ Sci Technol; 2014 Oct; 48(20):12229-37. PubMed ID: 25238428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NdFeB content in ancillary motors of U.S. conventional passenger cars and light trucks: Results from the field.
    Nguyen RT; Imholte DD; Matthews AC; Swank WD
    Waste Manag; 2019 Jan; 83():209-217. PubMed ID: 30459019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with 'designer properties' that exceed those of starting materials.
    Zakotnik M; Tudor CO
    Waste Manag; 2015 Oct; 44():48-54. PubMed ID: 26239935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.
    Jin H; Afiuny P; Dove S; Furlan G; Zakotnik M; Yih Y; Sutherland JW
    Environ Sci Technol; 2018 Mar; 52(6):3796-3802. PubMed ID: 29486124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction.
    Pavón S; Fortuny A; Coll MT; Sastre AM
    J Environ Manage; 2018 Sep; 222():359-367. PubMed ID: 29870964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnCl
    Ding A; Liu C; Zhang X; Lei L; Xiao C
    Environ Sci Technol; 2022 Apr; 56(7):4404-4412. PubMed ID: 35286072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical activation induced treatment for the synergistic recovery of valuable elements from spent NdFeB magnets.
    Wu J; Wang D; Zhang Z; Ye C; Wang Z; Hu X
    Waste Manag; 2024 Apr; 178():76-84. PubMed ID: 38382349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis.
    Liu Q; Sun K; Ouyang X; Sen B; Liu L; Dai T; Liu G
    Environ Sci Technol; 2022 Aug; 56(16):11807-11817. PubMed ID: 35920659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.
    Bandara HM; Darcy JW; Apelian D; Emmert MH
    Environ Sci Technol; 2014 Jun; 48(12):6553-60. PubMed ID: 24934194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disposal of waste computer hard disk drive: data destruction and resources recycling.
    Yan G; Xue M; Xu Z
    Waste Manag Res; 2013 Jun; 31(6):559-67. PubMed ID: 23524996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea.
    Swain B; Kang L; Mishra C; Ahn J; Hong HS
    Waste Manag; 2015 Nov; 45():351-60. PubMed ID: 26210233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An innovative environmental process for the treatment of scrap Nd-Fe-B magnets.
    Kumari A; Jha MK; Pathak DD
    J Environ Manage; 2020 Nov; 273():111063. PubMed ID: 32861149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of additively printed rare-earth bonded magnets.
    Gandha K; Ouyang G; Gupta S; Kunc V; Parans Paranthaman M; Nlebedim IC
    Waste Manag; 2019 May; 90():94-99. PubMed ID: 31088677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.