BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25029479)

  • 1. Trion electroluminescence from semiconducting carbon nanotubes.
    Jakubka F; Grimm SB; Zakharko Y; Gannott F; Zaumseil J
    ACS Nano; 2014 Aug; 8(8):8477-86. PubMed ID: 25029479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of negative and positive trions in the electrochemically carrier-doped single-walled carbon nanotubes.
    Park JS; Hirana Y; Mouri S; Miyauchi Y; Nakashima N; Matsuda K
    J Am Chem Soc; 2012 Sep; 134(35):14461-6. PubMed ID: 22870955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks.
    Wieland S; El Yumin AA; Gotthardt JM; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):3112-3122. PubMed ID: 36824583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of charged excitons in electronically and morphologically homogeneous single-walled carbon nanotubes.
    Bai Y; Olivier JH; Bullard G; Liu C; Therien MJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):674-679. PubMed ID: 29311334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
    Jakubka F; Backes C; Gannott F; Mundloch U; Hauke F; Hirsch A; Zaumseil J
    ACS Nano; 2013 Aug; 7(8):7428-35. PubMed ID: 23915032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
    Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA
    ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid state carbon nanotube device for controllable trion electroluminescence emission.
    Liang S; Ma Z; Wei N; Liu H; Wang S; Peng LM
    Nanoscale; 2016 Mar; 8(12):6761-9. PubMed ID: 26953676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes.
    Marty L; Adam E; Albert L; Doyon R; Ménard D; Martel R
    Phys Rev Lett; 2006 Apr; 96(13):136803. PubMed ID: 16712017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities.
    Möhl C; Graf A; Berger FJ; Lüttgens J; Zakharko Y; Lumsargis V; Gather MC; Zaumseil J
    ACS Photonics; 2018 Jun; 5(6):2074-2080. PubMed ID: 29963582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy.
    Matsunaga R; Matsuda K; Kanemitsu Y
    Phys Rev Lett; 2011 Jan; 106(3):037404. PubMed ID: 21405298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices.
    Gaulke M; Janissek A; Peyyety NA; Alamgir I; Riaz A; Dehm S; Li H; Lemmer U; Flavel BS; Kappes MM; Hennrich F; Wei L; Chen Y; Pyatkov F; Krupke R
    ACS Nano; 2020 Mar; 14(3):2709-2717. PubMed ID: 31920075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled defects in semiconducting carbon nanotubes promote efficient generation and luminescence of trions.
    Brozena AH; Leeds JD; Zhang Y; Fourkas JT; Wang Y
    ACS Nano; 2014 May; 8(5):4239-47. PubMed ID: 24669843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge Transport in and Electroluminescence from sp
    Zorn NF; Berger FJ; Zaumseil J
    ACS Nano; 2021 Jun; 15(6):10451-10463. PubMed ID: 34048654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton-to-trion conversion as a control mechanism for valley polarization in room-temperature monolayer WS
    Carmiggelt JJ; Borst M; van der Sar T
    Sci Rep; 2020 Oct; 10(1):17389. PubMed ID: 33060773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-emitting quantum dot transistors: emission at high charge carrier densities.
    Schornbaum J; Zakharko Y; Held M; Thiemann S; Gannott F; Zaumseil J
    Nano Lett; 2015 Mar; 15(3):1822-8. PubMed ID: 25652433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
    Park YS; Bae WK; Pietryga JM; Klimov VI
    ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Defect-Induced Trion in Monolayer WS
    Sebait R; Biswas C; Song B; Seo C; Lee YH
    ACS Nano; 2021 Feb; 15(2):2849-2857. PubMed ID: 33470093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes.
    Hartleb H; Späth F; Hertel T
    ACS Nano; 2015 Oct; 9(10):10461-70. PubMed ID: 26381021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.