These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 25030024)

  • 41. Thermogravimetric kinetics of crude glycerol.
    Dou B; Dupont V; Williams PT; Chen H; Ding Y
    Bioresour Technol; 2009 May; 100(9):2613-20. PubMed ID: 19167215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Valorisation of waste tyre by pyrolysis in a moving bed reactor.
    Aylón E; Fernández-Colino A; Murillo R; Navarro MV; García T; Mastral AM
    Waste Manag; 2010 Jul; 30(7):1220-4. PubMed ID: 19896820
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pyrolysis of scrap tyres with zeolite USY.
    Shen B; Wu C; Wang R; Guo B; Liang C
    J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell.
    Lei Z; Wang S; Fu H; Gao W; Wang B; Zeng J; Xu J
    Bioresour Technol; 2019 Jun; 282():228-235. PubMed ID: 30870688
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermo gravimetric and kinetic studies on dried solid waste of post-methanated distillery effluent under oxygen and nitrogen atmosphere.
    Naveen C; Premalatha M
    Bioresour Technol; 2014 Dec; 174():126-33. PubMed ID: 25463791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis.
    Islam MA; Asif M; Hameed BH
    Bioresour Technol; 2015 Mar; 179():227-233. PubMed ID: 25545092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.
    Sadhukhan AK; Gupta P; Goyal T; Saha RK
    Bioresour Technol; 2008 Nov; 99(17):8022-6. PubMed ID: 18485697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non isothermal model free kinetics for pyrolysis of rice straw.
    Mishra G; Bhaskar T
    Bioresour Technol; 2014 Oct; 169():614-621. PubMed ID: 25105267
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion.
    Torres-García E; Ramírez-Verduzco LF; Aburto J
    Waste Manag; 2020 Apr; 106():203-212. PubMed ID: 32240937
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network.
    Naqvi SR; Hameed Z; Tariq R; Taqvi SA; Ali I; Niazi MBK; Noor T; Hussain A; Iqbal N; Shahbaz M
    Waste Manag; 2019 Feb; 85():131-140. PubMed ID: 30803566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective waste management through Co-pyrolysis of EFB and tire waste: Mechanistic and synergism analysis.
    Mong GR; Liew CS; Idris R; Woon KS; Chong WWF; Chiong MC; Lim JW; Chong CT; Lee CT; Wong KY; Ng AKL
    J Environ Manage; 2024 Sep; 368():122172. PubMed ID: 39137640
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Waste tyre pyrolysis: modelling of a moving bed reactor.
    Aylón E; Fernández-Colino A; Murillo R; Grasa G; Navarro MV; García T; Mastral AM
    Waste Manag; 2010 Dec; 30(12):2530-6. PubMed ID: 20510597
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis.
    Liu G; Song H; Wu J
    Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Seasonal variation and correlation with environmental factors of photosynthesis and water use efficiency of Juglans regia and Ziziphus jujuba.
    Yang HB; An SQ; Sun OJ; Shi ZM; She XS; Sun QY; Liu SR
    J Integr Plant Biol; 2008 Feb; 50(2):210-20. PubMed ID: 18713444
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics of co-pyrolysis of sawdust, coal and tar.
    Montiano MG; Díaz-Faes E; Barriocanal C
    Bioresour Technol; 2016 Apr; 205():222-9. PubMed ID: 26829530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 Mar; 38(3):271-278. PubMed ID: 31599207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.
    Chandrasekaran SR; Hopke PK
    Bioresour Technol; 2012 Dec; 125():52-8. PubMed ID: 23026316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetics study on conventional and microwave pyrolysis of moso bamboo.
    Dong Q; Xiong Y
    Bioresour Technol; 2014 Nov; 171():127-31. PubMed ID: 25194260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.