These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 25030024)

  • 61. Kinetics, thermodynamics, and thermal decomposition behavior of palm oil empty fruit bunch, coconut shell, bamboo, and cardboard pyrolysis: an integrated approach using Coats-Redfern method.
    Supee AH; Zaini MAA
    Environ Monit Assess; 2023 Sep; 195(10):1218. PubMed ID: 37718332
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pyrolysis characteristics of bean dregs and in situ visualization of pyrolysis transformation.
    Zhu G; Zhu X; Xiao Z; Zhou R; Yi F
    Waste Manag; 2012 Dec; 32(12):2287-93. PubMed ID: 22846884
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Thermal pyrolysis characteristics of macroalgae Cladophora glomerata.
    Gao W; Chen K; Zeng J; Xu J; Wang B
    Bioresour Technol; 2017 Nov; 243():212-217. PubMed ID: 28667840
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach.
    Chhabra V; Bhattacharya S; Shastri Y
    Waste Manag; 2019 May; 90():152-167. PubMed ID: 30935785
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.
    Gil MV; Casal D; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Jul; 101(14):5601-8. PubMed ID: 20189802
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Non-isothermal thermogravimetric analysis of oil-palm solid wastes.
    Luangkiattikhun P; Tangsathitkulchai C; Tangsathitkulchai M
    Bioresour Technol; 2008 Mar; 99(5):986-97. PubMed ID: 17451942
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model.
    Ma F; Zeng Y; Wang J; Yang Y; Yang X; Zhang X
    Bioresour Technol; 2013 Jan; 128():417-22. PubMed ID: 23201523
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass.
    Kim SS; Ly HV; Kim J; Choi JH; Woo HC
    Bioresour Technol; 2013 Jul; 139():242-8. PubMed ID: 23665684
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analyzing the kinetics of waste plant biomass pyrolysis via thermogravimetry modeling and semi-statistical methods.
    Postawa K; Fałtynowicz H; Szczygieł J; Beran E; Kułażyński M
    Bioresour Technol; 2022 Jan; 344(Pt B):126181. PubMed ID: 34755652
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kinetics of thermal decomposition of some biomasses in an inert environment. An investigation of the effect of lead loaded by biosorption.
    Martín-Lara MÁ; Iáñez-Rodríguez I; Blázquez G; Quesada L; Pérez A; Calero M
    Waste Manag; 2017 Dec; 70():101-113. PubMed ID: 28951148
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis.
    He Y; Ma X; Zeng G
    Bioresour Technol; 2015 Feb; 177():346-54. PubMed ID: 25506821
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies.
    Rasool T; Najar I; Srivastava VC; Pandey A
    Bioresour Technol; 2021 Oct; 337():125466. PubMed ID: 34320746
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge.
    Lin Y; Ma X; Yu Z; Cao Y
    Bioresour Technol; 2014 Aug; 166():444-50. PubMed ID: 24935005
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.
    Hu M; Chen Z; Guo D; Liu C; Xiao B; Hu Z; Liu S
    Bioresour Technol; 2015 Feb; 177():41-50. PubMed ID: 25479392
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On the pyrolysis kinetics of scrap automotive tires.
    Chen JH; Chen KS; Tong LY
    J Hazard Mater; 2001 Jun; 84(1):43-55. PubMed ID: 11376883
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synergistic interactions, kinetic and thermodynamic analysis of co-pyrolysis of municipal paper and polypropylene waste.
    Galiwango E; A Gabbar H
    Waste Manag; 2022 Jun; 146():86-93. PubMed ID: 35580372
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling.
    Hai A; Bharath G; Daud M; Rambabu K; Ali I; Hasan SW; Show P; Banat F
    Chemosphere; 2021 Nov; 283():131162. PubMed ID: 34157626
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.
    Biney PO; Gyamerah M; Shen J; Menezes B
    Bioresour Technol; 2015 Mar; 179():113-122. PubMed ID: 25531683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.