These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 25030024)
81. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis. Hu Z; Chen Z; Li G; Chen X; Hu M; Laghari M; Wang X; Guo D Bioresour Technol; 2015 Oct; 194():364-72. PubMed ID: 26210527 [TBL] [Abstract][Full Text] [Related]
82. Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model. Li X; Mei Q; Dai X; Ding G Bioresour Technol; 2017 Mar; 227():297-307. PubMed ID: 28040651 [TBL] [Abstract][Full Text] [Related]
83. Pyrolysis characteristics of the mixture of printed circuit board scraps and coal powder. Hao J; Wang H; Chen S; Cai B; Ge L; Xia W Waste Manag; 2014 Oct; 34(10):1763-9. PubMed ID: 24269060 [TBL] [Abstract][Full Text] [Related]
84. Combustion of pistachio shell: physicochemical characterization and evaluation of kinetic parameters. da Silva JCG; Alves JLF; Galdino WVA; Moreira RFPM; José HJ; de Sena RF; Andersen SLF Environ Sci Pollut Res Int; 2018 Aug; 25(22):21420-21429. PubMed ID: 28386892 [TBL] [Abstract][Full Text] [Related]
85. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis. Chihobo CH; Chowdhury A; Kuipa PK; Simbi DJ Waste Manag Res; 2016 Dec; 34(12):1258-1267. PubMed ID: 27729402 [TBL] [Abstract][Full Text] [Related]
86. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials. Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063 [TBL] [Abstract][Full Text] [Related]
87. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Idris SS; Abd Rahman N; Ismail K; Alias AB; Abd Rashid Z; Aris MJ Bioresour Technol; 2010 Jun; 101(12):4584-92. PubMed ID: 20153633 [TBL] [Abstract][Full Text] [Related]
88. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR. Liu G; Liao Y; Ma X Waste Manag; 2017 Mar; 61():315-326. PubMed ID: 28161337 [TBL] [Abstract][Full Text] [Related]
89. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres. Li L; Zhao N; Fu X; Shao M; Qin S Bioresour Technol; 2013 Jul; 140():152-7. PubMed ID: 23693145 [TBL] [Abstract][Full Text] [Related]
90. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Wongsiriamnuay T; Tippayawong N Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804 [TBL] [Abstract][Full Text] [Related]
91. Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material: Model fitting approach. Kalidasan B; Pandey AK; Aljafari B; Chinnasamy S; Kareri T; Rahman S J Environ Manage; 2023 Dec; 348():119439. PubMed ID: 37890400 [TBL] [Abstract][Full Text] [Related]
92. Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition. Deng N; Zhang YF; Wang Y Waste Manag; 2008; 28(9):1572-80. PubMed ID: 17911006 [TBL] [Abstract][Full Text] [Related]
93. Online evolved gas analysis by Thermogravimetric-Mass Spectroscopy for thermal decomposition of biomass and its components under different atmospheres: part I. Lignin. Shen D; Hu J; Xiao R; Zhang H; Li S; Gu S Bioresour Technol; 2013 Feb; 130():449-56. PubMed ID: 23313692 [TBL] [Abstract][Full Text] [Related]
94. Determination of kinetic parameters of Phlomis bovei de Noé using thermogravimetric analysis. Yahiaoui M; Hadoun H; Toumert I; Hassani A Bioresour Technol; 2015 Nov; 196():441-7. PubMed ID: 26276095 [TBL] [Abstract][Full Text] [Related]
95. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416 [TBL] [Abstract][Full Text] [Related]
96. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. Galvagno S; Casu S; Casabianca T; Calabrese A; Cornacchia G Waste Manag; 2002; 22(8):917-23. PubMed ID: 12423055 [TBL] [Abstract][Full Text] [Related]
97. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Li Z; Zhao W; Meng B; Liu C; Zhu Q; Zhao G Bioresour Technol; 2008 Nov; 99(16):7616-22. PubMed ID: 18343656 [TBL] [Abstract][Full Text] [Related]
98. Thermo-catalytic decomposition of polystyrene waste: Comparative analysis using different kinetic models. Ali G; Nisar J; Iqbal M; Shah A; Abbas M; Shah MR; Rashid U; Bhatti IA; Khan RA; Shah F Waste Manag Res; 2020 Feb; 38(2):202-212. PubMed ID: 31405341 [TBL] [Abstract][Full Text] [Related]
99. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. López-González D; Fernandez-Lopez M; Valverde JL; Sanchez-Silva L Bioresour Technol; 2013 Sep; 143():562-74. PubMed ID: 23835261 [TBL] [Abstract][Full Text] [Related]
100. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Mishra RK; Sahoo A; Mohanty K Bioresour Technol; 2019 Oct; 289():121608. PubMed ID: 31207415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]