BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25030932)

  • 1. Matrix factorization methods for integrative cancer genomics.
    Zhang S; Zhou XJ
    Methods Mol Biol; 2014; 1176():229-42. PubMed ID: 25030932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data.
    Zhang S; Liu CC; Li W; Shen H; Laird PW; Zhou XJ
    Nucleic Acids Res; 2012 Oct; 40(19):9379-91. PubMed ID: 22879375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating multiple types of data to identify microRNA-gene co-modules.
    Zhang S
    Methods Mol Biol; 2013; 1049():215-29. PubMed ID: 23913219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Methods for Subtyping of Tumors and Their Applications for Deciphering Tumor Heterogeneity.
    Zhang S
    Methods Mol Biol; 2019; 1878():193-207. PubMed ID: 30378077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks.
    Wang P; Gao L; Hu Y; Li F
    BMC Bioinformatics; 2018 Oct; 19(1):394. PubMed ID: 30373534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative Exploratory Analysis of Two or More Genomic Datasets.
    Meng C; Culhane A
    Methods Mol Biol; 2016; 1418():19-38. PubMed ID: 27008008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depicting the genetic architecture of pediatric cancers through an integrative gene network approach.
    Savary C; Kim A; Lespagnol A; Gandemer V; Pellier I; Andrieu C; Pagès G; Galibert MD; Blum Y; de Tayrac M
    Sci Rep; 2020 Jan; 10(1):1224. PubMed ID: 31988326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative network analysis for survival-associated gene-gene interactions across multiple genomic profiles in ovarian cancer.
    Jeong HH; Leem S; Wee K; Sohn KA
    J Ovarian Res; 2015 Jul; 8():42. PubMed ID: 26138921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data.
    Li W; Zhang S; Liu CC; Zhou XJ
    Bioinformatics; 2012 Oct; 28(19):2458-66. PubMed ID: 22863767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.
    Liang M; Li Z; Chen T; Zeng J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):928-37. PubMed ID: 26357333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InterSIM: Simulation tool for multiple integrative 'omic datasets'.
    Chalise P; Raghavan R; Fridley BL
    Comput Methods Programs Biomed; 2016 May; 128():69-74. PubMed ID: 27040832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational prediction of cancer-gene function.
    Hu P; Bader G; Wigle DA; Emili A
    Nat Rev Cancer; 2007 Jan; 7(1):23-34. PubMed ID: 17167517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization.
    Liu D; Davila-Velderrain J; Zhang Z; Kellis M
    Nucleic Acids Res; 2019 Aug; 47(14):7235-7246. PubMed ID: 31265076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning common and specific patterns from data of multiple interrelated biological scenarios with matrix factorization.
    Zhang L; Zhang S
    Nucleic Acids Res; 2019 Jul; 47(13):6606-6617. PubMed ID: 31175825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of two-level modular organization from matched genomic data via joint matrix tri-factorization.
    Chen J; Zhang S
    Nucleic Acids Res; 2018 Jul; 46(12):5967-5976. PubMed ID: 29878151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.