These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
566 related articles for article (PubMed ID: 25031010)
1. The hemagglutinin: a determinant of pathogenicity. Böttcher-Friebertshäuser E; Garten W; Matrosovich M; Klenk HD Curr Top Microbiol Immunol; 2014; 385():3-34. PubMed ID: 25031010 [TBL] [Abstract][Full Text] [Related]
2. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice. Teng Q; Xu D; Shen W; Liu Q; Rong G; Li X; Yan L; Yang J; Chen H; Yu H; Ma W; Li Z J Virol; 2016 Nov; 90(21):9806-9825. PubMed ID: 27558420 [TBL] [Abstract][Full Text] [Related]
3. Hemagglutinins of Avian Influenza Viruses Are Proteolytically Activated by TMPRSS2 in Human and Murine Airway Cells. Bestle D; Limburg H; Kruhl D; Harbig A; Stein DA; Moulton H; Matrosovich M; Abdelwhab EM; Stech J; Böttcher-Friebertshäuser E J Virol; 2021 Sep; 95(20):e0090621. PubMed ID: 34319155 [TBL] [Abstract][Full Text] [Related]
4. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. Heider A; Mochalova L; Harder T; Tuzikov A; Bovin N; Wolff T; Matrosovich M; Schweiger B J Virol; 2015 May; 89(10):5395-405. PubMed ID: 25741006 [TBL] [Abstract][Full Text] [Related]
6. N-glycan structures of human alveoli provide insight into influenza A virus infection and pathogenesis. Sriwilaijaroen N; Nakakita SI; Kondo S; Yagi H; Kato K; Murata T; Hiramatsu H; Kawahara T; Watanabe Y; Kanai Y; Ono T; Hirabayashi J; Matsumoto K; Suzuki Y FEBS J; 2018 May; 285(9):1611-1634. PubMed ID: 29542865 [TBL] [Abstract][Full Text] [Related]
7. The role of receptor binding specificity in interspecies transmission of influenza viruses. Imai M; Kawaoka Y Curr Opin Virol; 2012 Apr; 2(2):160-7. PubMed ID: 22445963 [TBL] [Abstract][Full Text] [Related]
8. T160A mutation-induced deglycosylation at site 158 in hemagglutinin is a critical determinant of the dual receptor binding properties of clade 2.3.4.4 H5NX subtype avian influenza viruses. Gao R; Gu M; Liu K; Li Q; Li J; Shi L; Li X; Wang X; Hu J; Liu X; Hu S; Chen S; Peng D; Jiao X; Liu X Vet Microbiol; 2018 Apr; 217():158-166. PubMed ID: 29615249 [TBL] [Abstract][Full Text] [Related]
9. TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. Limburg H; Harbig A; Bestle D; Stein DA; Moulton HM; Jaeger J; Janga H; Hardes K; Koepke J; Schulte L; Koczulla AR; Schmeck B; Klenk HD; Böttcher-Friebertshäuser E J Virol; 2019 Nov; 93(21):. PubMed ID: 31391268 [TBL] [Abstract][Full Text] [Related]
10. An overview of influenza A virus receptors. Ge S; Wang Z Crit Rev Microbiol; 2011 May; 37(2):157-65. PubMed ID: 21438845 [TBL] [Abstract][Full Text] [Related]
11. Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells. Dittrich A; Scheibner D; Salaheldin AH; Veits J; Gischke M; Mettenleiter TC; Abdelwhab EM Viruses; 2018 Feb; 10(2):. PubMed ID: 29443887 [TBL] [Abstract][Full Text] [Related]
12. Adaptation of influenza viruses to human airway receptors. Thompson AJ; Paulson JC J Biol Chem; 2021; 296():100017. PubMed ID: 33144323 [TBL] [Abstract][Full Text] [Related]
13. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Xiong X; McCauley JW; Steinhauer DA Curr Top Microbiol Immunol; 2014; 385():63-91. PubMed ID: 25078920 [TBL] [Abstract][Full Text] [Related]
14. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin. Qi L; Pujanauski LM; Davis AS; Schwartzman LM; Chertow DS; Baxter D; Scherler K; Hartshorn KL; Slemons RD; Walters KA; Kash JC; Taubenberger JK mBio; 2014 Nov; 5(6):e02116. PubMed ID: 25406382 [TBL] [Abstract][Full Text] [Related]
15. Influenza A Virus Agnostic Receptor Tropism Revealed Using a Novel Biological System with Terminal Sialic Acid Knockout Cells. Kamiki H; Murakami S; Nishikaze T; Hiono T; Igarashi M; Furuse Y; Matsugo H; Ishida H; Katayama M; Sekine W; Muraki Y; Takahashi M; Takenaka-Uema A; Horimoto T J Virol; 2022 Aug; 96(15):e0041622. PubMed ID: 35862707 [TBL] [Abstract][Full Text] [Related]
16. H5N1 receptor specificity as a factor in pandemic risk. Paulson JC; de Vries RP Virus Res; 2013 Dec; 178(1):99-113. PubMed ID: 23619279 [TBL] [Abstract][Full Text] [Related]
17. Effects of HA and NA glycosylation pattern changes on the transmission of avian influenza A(H7N9) virus in guinea pigs. Park S; Lee I; Kim JI; Bae JY; Yoo K; Kim J; Nam M; Park M; Yun SH; Cho WI; Kim YS; Ko YY; Park MS Biochem Biophys Res Commun; 2016 Oct; 479(2):192-197. PubMed ID: 27613087 [TBL] [Abstract][Full Text] [Related]
18. Amino acid substitution at position 44 of matrix protein 2 of an avirulent H5 avian influenza virus is crucial for acquiring the highly pathogenic phenotype in chickens. Fujimoto Y; Ito H; Tomita M; Ono E; Usui T; Ito T Arch Virol; 2015 Aug; 160(8):2063-70. PubMed ID: 26081872 [TBL] [Abstract][Full Text] [Related]
19. Hemagglutinin Stability Regulates H1N1 Influenza Virus Replication and Pathogenicity in Mice by Modulating Type I Interferon Responses in Dendritic Cells. Russier M; Yang G; Briard B; Meliopoulos V; Cherry S; Kanneganti TD; Schultz-Cherry S; Vogel P; Russell CJ J Virol; 2020 Jan; 94(3):. PubMed ID: 31694942 [TBL] [Abstract][Full Text] [Related]
20. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Gao R; Gu M; Shi L; Liu K; Li X; Wang X; Hu J; Liu X; Hu S; Chen S; Peng D; Jiao X; Liu X Vet Res; 2021 Jan; 52(1):8. PubMed ID: 33436086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]