BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 25031010)

  • 61. Role of H7 hemagglutinin in murine infectivity of influenza viruses following ocular inoculation.
    Belser JA; Sun X; Creager HM; Johnson A; Ridenour C; Chen LM; Tumpey TM; Maines TR
    Virology; 2017 Feb; 502():13-19. PubMed ID: 27960109
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities.
    Stevens J; Blixt O; Glaser L; Taubenberger JK; Palese P; Paulson JC; Wilson IA
    J Mol Biol; 2006 Feb; 355(5):1143-55. PubMed ID: 16343533
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modification of the hemagglutinin cleavage site allows indirect activation of avian influenza virus H9N2 by bacterial staphylokinase.
    Tse LV; Whittaker GR
    Virology; 2015 Aug; 482():1-8. PubMed ID: 25841078
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ser-Leu substitution at P2 position of the hemagglutinin cleavage site attenuates replication and pathogenicity of Eurasian avian-like H1N2 swine influenza viruses.
    Cai M; Zhong R; Qin C; Yu Z; Huang J; Wen X; Ji C; Chen Y; Cai Y; Yi H; Gong L; Zhang G
    Vet Microbiol; 2021 Feb; 253():108847. PubMed ID: 33360319
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Unique Structural Features of Influenza Virus H15 Hemagglutinin.
    Tzarum N; McBride R; Nycholat CM; Peng W; Paulson JC; Wilson IA
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28404848
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin.
    Igarashi M; Ito K; Kida H; Takada A
    Virology; 2008 Jul; 376(2):323-9. PubMed ID: 18456302
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A complete map of potential pathogenicity markers of avian influenza virus subtype H5 predicted from 11 expressed proteins.
    Khaliq Z; Leijon M; Belák S; Komorowski J
    BMC Microbiol; 2015 Jun; 15():128. PubMed ID: 26112351
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influenza Virus Overcomes Cellular Blocks To Productively Replicate, Impacting Macrophage Function.
    Marvin SA; Russier M; Huerta CT; Russell CJ; Schultz-Cherry S
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807237
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Amino acid substitutions occurring during adaptation of an emergent H5N6 avian influenza virus to mammals.
    Peng X; Wu H; Peng X; Wu X; Cheng L; Liu F; Ji S; Wu N
    Arch Virol; 2016 Jun; 161(6):1665-70. PubMed ID: 26997612
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insertions of codons encoding basic amino acids in H7 hemagglutinins of influenza A viruses occur by recombination with RNA at hotspots near snoRNA binding sites.
    Gultyaev AP; Spronken MI; Funk M; Fouchier RAM; Richard M
    RNA; 2021 Feb; 27(2):123-132. PubMed ID: 33188057
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of fusion activity of influenza A viruses in their biological properties.
    Jakubcová L; Hollý J; Varečková E
    Acta Virol; 2016 Jun; 60(2):121-35. PubMed ID: 27265461
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Induced increase in virulence of low virulence highly [corrected] pathogenic avian influenza by serial intracerebral passage in chickens.
    Löndt BZ; Banks J; Gardner R; Cox WJ; Brown IH
    Avian Dis; 2007 Mar; 51(1 Suppl):396-400. PubMed ID: 17494593
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pathogenic potential of North American H7N2 avian influenza virus: a mutagenesis study using reverse genetics.
    Lee CW; Lee YJ; Senne DA; Suarez DL
    Virology; 2006 Sep; 353(2):388-95. PubMed ID: 16828833
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of an H4N2 influenza virus from Quails with a multibasic motif in the hemagglutinin cleavage site.
    Wong SS; Yoon SW; Zanin M; Song MS; Oshansky C; Zaraket H; Sonnberg S; Rubrum A; Seiler P; Ferguson A; Krauss S; Cardona C; Webby RJ; Crossley B
    Virology; 2014 Nov; 468-470():72-80. PubMed ID: 25151061
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957.
    Liu J; Stevens DJ; Haire LF; Walker PA; Coombs PJ; Russell RJ; Gamblin SJ; Skehel JJ
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17175-80. PubMed ID: 19805083
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis.
    de Bruin ACM; Funk M; Spronken MI; Gultyaev AP; Fouchier RAM; Richard M
    Viruses; 2022 Jul; 14(7):. PubMed ID: 35891546
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influenza virus-glycan interactions.
    Air GM
    Curr Opin Virol; 2014 Aug; 7():128-33. PubMed ID: 25061947
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry.
    Gambaryan AS; Tuzikov AB; Pazynina GV; Desheva JA; Bovin NV; Matrosovich MN; Klimov AI
    Virol J; 2008 Jul; 5():85. PubMed ID: 18652681
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Three mutations switch H7N9 influenza to human-type receptor specificity.
    de Vries RP; Peng W; Grant OC; Thompson AJ; Zhu X; Bouwman KM; de la Pena ATT; van Breemen MJ; Ambepitiya Wickramasinghe IN; de Haan CAM; Yu W; McBride R; Sanders RW; Woods RJ; Verheije MH; Wilson IA; Paulson JC
    PLoS Pathog; 2017 Jun; 13(6):e1006390. PubMed ID: 28617868
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification of a key amino acid in hemagglutinin that increases human-type receptor binding and transmission of an H6N2 avian influenza virus.
    Qu Z; Ma S; Kong H; Deng G; Shi J; Liu L; Suzuki Y; Chen H
    Microbes Infect; 2017 Dec; 19(12):655-660. PubMed ID: 28951329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.