These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Face cooling increases blood pressure during central hypovolemia. Johnson BD; Sackett JR; Sarker S; Schlader ZJ Am J Physiol Regul Integr Comp Physiol; 2017 Nov; 313(5):R594-R600. PubMed ID: 28855179 [TBL] [Abstract][Full Text] [Related]
4. The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia. Kay VL; Rickards CA Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R375-83. PubMed ID: 26676249 [TBL] [Abstract][Full Text] [Related]
5. Hemostatic responses to exercise, dehydration, and simulated bleeding in heat-stressed humans. Borgman MA; Zaar M; Aden JK; Schlader ZJ; Gagnon D; Rivas E; Kern J; Koons NJ; Convertino VA; Cap AP; Crandall C Am J Physiol Regul Integr Comp Physiol; 2019 Feb; 316(2):R145-R156. PubMed ID: 30231210 [TBL] [Abstract][Full Text] [Related]
6. Forehead versus forearm skin vascular responses at presyncope in humans. Gagnon D; Matthew Brothers R; Ganio MS; Hastings JL; Crandall CG Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(7):R908-13. PubMed ID: 25100073 [TBL] [Abstract][Full Text] [Related]
7. Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge. Pearson J; Lucas RA; Schlader ZJ; Gagnon D; Crandall CG Exp Physiol; 2017 Feb; 102(2):255-264. PubMed ID: 27981648 [TBL] [Abstract][Full Text] [Related]
8. Oxygen saturation determined from deep muscle, not thenar tissue, is an early indicator of central hypovolemia in humans. Soller BR; Ryan KL; Rickards CA; Cooke WH; Yang Y; Soyemi OO; Crookes BA; Heard SO; Convertino VA Crit Care Med; 2008 Jan; 36(1):176-82. PubMed ID: 18090350 [TBL] [Abstract][Full Text] [Related]
9. Heat stress does not augment ventilatory responses to presyncopal limited lower body negative pressure. Pearson J; Ganio MS; Lucas RA; Babb TG; Crandall CG Exp Physiol; 2013 Jul; 98(7):1156-63. PubMed ID: 23585326 [TBL] [Abstract][Full Text] [Related]
10. Sex Differences in Sympathetic Responses to Lower-Body Negative Pressure. Jarrard CP; Watso JC; Atkins WC; McKenna ZJ; Foster J; Huang MU; Belval LN; Crandall CG Med Sci Sports Exerc; 2024 Jun; 56(6):1056-1065. PubMed ID: 38233995 [TBL] [Abstract][Full Text] [Related]
11. Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure. Bartels SA; Bezemer R; de Vries FJ; Milstein DM; Lima A; Cherpanath TG; van den Meiracker AH; van Bommel J; Heger M; Karemaker JM; Ince C Intensive Care Med; 2011 Apr; 37(4):671-7. PubMed ID: 21253704 [TBL] [Abstract][Full Text] [Related]
12. Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans. Soller BR; Yang Y; Soyemi OO; Ryan KL; Rickards CA; Walz JM; Heard SO; Convertino VA J Appl Physiol (1985); 2008 Feb; 104(2):475-81. PubMed ID: 18006869 [TBL] [Abstract][Full Text] [Related]
13. Small reductions in skin temperature after onset of a simulated hemorrhagic challenge improve tolerance in exercise heat-stressed individuals. Trotter CE; Pizzey FK; Batterson PM; Jacobs RA; Pearson J Am J Physiol Regul Integr Comp Physiol; 2018 Sep; 315(3):R539-R546. PubMed ID: 30088981 [TBL] [Abstract][Full Text] [Related]
14. The microcirculatory response to compensated hypovolemia in a lower body negative pressure model. Bartels SA; Bezemer R; Milstein DM; Radder M; Lima A; Cherpanath TG; Heger M; Karemaker JM; Ince C Microvasc Res; 2011 Nov; 82(3):374-80. PubMed ID: 21839097 [TBL] [Abstract][Full Text] [Related]
15. Blunted cutaneous vasoconstriction and increased frequency of presyncope during an orthostatic challenge under moderate heat stress in the morning. Aoki K; Ogawa Y; Iwasaki K Eur J Appl Physiol; 2014 Mar; 114(3):629-38. PubMed ID: 24357224 [TBL] [Abstract][Full Text] [Related]
16. The impact of acute central hypovolemia on cerebral hemodynamics: does sex matter? Rosenberg AJ; Kay VL; Anderson GK; Luu ML; Barnes HJ; Sprick JD; Alvarado HB; Rickards CA J Appl Physiol (1985); 2021 Jun; 130(6):1786-1797. PubMed ID: 33914663 [TBL] [Abstract][Full Text] [Related]
17. A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure. Rosenberg AJ; Kay VL; Anderson GK; Sprick JD; Rickards CA J Appl Physiol (1985); 2021 Feb; 130(2):380-389. PubMed ID: 33211600 [TBL] [Abstract][Full Text] [Related]
18. Facial fanning reduces heart rate but not tolerance to a simulated hemorrhagic challenge following exercise heat stress in young healthy humans. Tourula E; Lenzini M; Rhodes A; Hetz SE; Pearson J Am J Physiol Regul Integr Comp Physiol; 2024 Mar; 326(3):R210-R219. PubMed ID: 38105763 [TBL] [Abstract][Full Text] [Related]
19. Compensatory reserve index during central hypovolemia and volume loading in healthy young and older hyperthermic adults: A pilot study. Foster J; Gagnon D; Jarrard CP; Atkins WC; McKenna Z; Romero SA; Crandall CG Physiol Rep; 2024 Aug; 12(15):e16177. PubMed ID: 39107243 [TBL] [Abstract][Full Text] [Related]
20. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men. Ganio MS; Overgaard M; Seifert T; Secher NH; Johansson PI; Meyer MA; Crandall CG Am J Physiol Heart Circ Physiol; 2012 Apr; 302(8):H1756-61. PubMed ID: 22367508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]