BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25031230)

  • 21. Acute fasting reduces tolerance to progressive central hypovolemia in humans.
    Gonzalez JE; Cooke WH
    J Appl Physiol (1985); 2024 Feb; 136(2):362-371. PubMed ID: 38126086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy.
    Lee J; Kim JG; Mahon S; Tromberg BJ; Ryan KL; Convertino VA; Rickards CA; Osann K; Brenner M
    J Biomed Opt; 2008; 13(6):064027. PubMed ID: 19123673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The magnitude of heat stress-induced reductions in cerebral perfusion does not predict heat stress-induced reductions in tolerance to a simulated hemorrhage.
    Lee JF; Harrison ML; Brown SR; Brothers RM
    J Appl Physiol (1985); 2013 Jan; 114(1):37-44. PubMed ID: 23139368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypovolemic intolerance to lower body negative pressure in female runners.
    Morikawa T; Sagawa S; Torii R; Endo Y; Yamazaki F; Shiraki K
    Med Sci Sports Exerc; 2001 Dec; 33(12):2058-64. PubMed ID: 11740299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variability in integration of mechanisms associated with high tolerance to progressive reductions in central blood volume: the compensatory reserve.
    Carter R; Hinojosa-Laborde C; Convertino VA
    Physiol Rep; 2016 Feb; 4(4):. PubMed ID: 26884477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle sympathetic nerve activity during intense lower body negative pressure to presyncope in humans.
    Cooke WH; Rickards CA; Ryan KL; Kuusela TA; Convertino VA
    J Physiol; 2009 Oct; 587(Pt 20):4987-99. PubMed ID: 19703962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-intensity interval exercise reduces tolerance to a simulated haemorrhagic challenge in heat-stressed individuals.
    Trotter CE; Tourula E; Pizzey FK; Batterson PM; Jacobs RA; Pearson J
    Exp Physiol; 2021 Jan; 106(1):212-221. PubMed ID: 32003866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyperventilation in response to progressive reduction in central blood volume to near syncope.
    Convertino VA; Rickards CA; Lurie KG; Ryan KL
    Aviat Space Environ Med; 2009 Dec; 80(12):1012-7. PubMed ID: 20027847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time course of compensatory physiological responses to central hypovolemia in high- and low-tolerant human subjects.
    Xiang L; Hinojosa-Laborde C; Ryan KL; Rickards CA; Convertino VA
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R408-R416. PubMed ID: 29668322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers.
    van Genderen ME; Bartels SA; Lima A; Bezemer R; Ince C; Bakker J; van Bommel J
    Anesth Analg; 2013 Feb; 116(2):351-6. PubMed ID: 23302972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage.
    Schlader ZJ; Seifert T; Wilson TE; Bundgaard-Nielsen M; Secher NH; Crandall CG
    J Appl Physiol (1985); 2013 Jun; 114(12):1730-5. PubMed ID: 23580601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma hyperosmolality improves tolerance to combined heat stress and central hypovolemia in humans.
    Gagnon D; Romero SA; Ngo H; Poh PY; Crandall CG
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R273-R280. PubMed ID: 28003210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemodynamic Stability to Surface Warming and Cooling During Sustained and Continuous Simulated Hemorrhage in Humans.
    Poh PY; Gagnon D; Romero SA; Convertino VA; Adams-Huet B; Crandall CG
    Shock; 2016 Sep; 46(3 Suppl 1):42-9. PubMed ID: 27224744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge.
    Pearson J; Lucas RA; Schlader ZJ; Zhao J; Gagnon D; Crandall CG
    Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(7):R822-7. PubMed ID: 25080499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sweat loss during heat stress contributes to subsequent reductions in lower-body negative pressure tolerance.
    Lucas RA; Ganio MS; Pearson J; Crandall CG
    Exp Physiol; 2013 Feb; 98(2):473-80. PubMed ID: 22872657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of lower body negative pressure as an experimental model of hemorrhage.
    Hinojosa-Laborde C; Shade RE; Muniz GW; Bauer C; Goei KA; Pidcoke HF; Chung KK; Cap AP; Convertino VA
    J Appl Physiol (1985); 2014 Feb; 116(4):406-15. PubMed ID: 24356525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypercapnia-induced increases in cerebral blood flow do not improve lower body negative pressure tolerance during hyperthermia.
    Lucas RA; Pearson J; Schlader ZJ; Crandall CG
    Am J Physiol Regul Integr Comp Physiol; 2013 Sep; 305(6):R604-9. PubMed ID: 23864641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans.
    Levine BD; Giller CA; Lane LD; Buckey JC; Blomqvist CG
    Circulation; 1994 Jul; 90(1):298-306. PubMed ID: 8026012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LBNP tolerance analyzed retrospectively using a structural equation model.
    Wallace JP; Trail GT; Franke WD
    Aviat Space Environ Med; 2010 Apr; 81(4):363-8. PubMed ID: 20377138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tracking central hypovolemia with ecg in humans: cautions for the use of heart period variability in patient monitoring.
    Ryan KL; Rickards CA; Ludwig DA; Convertino VA
    Shock; 2010 Jun; 33(6):583-9. PubMed ID: 19997052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.