BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 25031418)

  • 1. Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience.
    Ko H; Mrsic-Flogel TD; Hofer SB
    J Neurosci; 2014 Jul; 34(29):9812-6. PubMed ID: 25031418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emergence of functional microcircuits in visual cortex.
    Ko H; Cossell L; Baragli C; Antolik J; Clopath C; Hofer SB; Mrsic-Flogel TD
    Nature; 2013 Apr; 496(7443):96-100. PubMed ID: 23552948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific excitatory connectivity for feature integration in mouse primary visual cortex.
    Muir DR; Molina-Luna P; Roth MM; Helmchen F; Kampa BM
    PLoS Comput Biol; 2017 Dec; 13(12):e1005888. PubMed ID: 29240769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent emergence of fine-scale networks in visual cortex.
    Ishikawa AW; Komatsu Y; Yoshimura Y
    J Neurosci; 2014 Sep; 34(37):12576-86. PubMed ID: 25209295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.
    Petrus E; Rodriguez G; Patterson R; Connor B; Kanold PO; Lee HK
    J Neurosci; 2015 Jun; 35(23):8790-801. PubMed ID: 26063913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical plasticity following stripe rearing in the marsupial Monodelphis domestica: neural response properties of V1.
    Dooley JC; Donaldson MS; Krubitzer LA
    J Neurophysiol; 2017 Feb; 117(2):566-581. PubMed ID: 27852732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-up and top-down dynamics in visual cortex.
    Schummers J; Sharma J; Sur M
    Prog Brain Res; 2005; 149():65-81. PubMed ID: 16226577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-type-specific sub- and suprathreshold receptive fields of layer 4 and layer 2/3 pyramids in rat primary visual cortex.
    Medini P
    Neuroscience; 2011 Sep; 190():112-26. PubMed ID: 21704132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Familiarity Induced 5-Hz Oscillations and Improved Orientation and Direction Selectivities in V1.
    Gao M; Lim S; Chubykin AA
    J Neurosci; 2021 Mar; 41(12):2656-2667. PubMed ID: 33563727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-specific experience-dependent rewiring of thalamocortical circuits.
    Wang L; Kloc M; Gu Y; Ge S; Maffei A
    J Neurosci; 2013 Feb; 33(9):4181-91. PubMed ID: 23447625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population code in mouse V1 facilitates readout of natural scenes through increased sparseness.
    Froudarakis E; Berens P; Ecker AS; Cotton RJ; Sinz FH; Yatsenko D; Saggau P; Bethge M; Tolias AS
    Nat Neurosci; 2014 Jun; 17(6):851-7. PubMed ID: 24747577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/zif268.
    Mataga N; Fujishima S; Condie BG; Hensch TK
    J Neurosci; 2001 Dec; 21(24):9724-32. PubMed ID: 11739581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience-Dependent Development of Feature-Selective Synchronization in the Primary Visual Cortex.
    Ishikawa AW; Komatsu Y; Yoshimura Y
    J Neurosci; 2018 Sep; 38(36):7852-7869. PubMed ID: 30064994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
    Tan AY; Brown BD; Scholl B; Mohanty D; Priebe NJ
    J Neurosci; 2011 Aug; 31(34):12339-50. PubMed ID: 21865476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experience-dependent regulation of functional maps and synaptic protein expression in the cat visual cortex.
    Jaffer S; Vorobyov V; Kind PC; Sengpiel F
    Eur J Neurosci; 2012 Apr; 35(8):1281-94. PubMed ID: 22512257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracortical Circuits in Thalamorecipient Layers of Auditory Cortex Refine after Visual Deprivation.
    Meng X; Kao JP; Lee HK; Kanold PO
    eNeuro; 2017; 4(2):. PubMed ID: 28396883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex.
    Tropea D; Majewska AK; Garcia R; Sur M
    J Neurosci; 2010 Aug; 30(33):11086-95. PubMed ID: 20720116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing.
    Vélez-Fort M; Rousseau CV; Niedworok CJ; Wickersham IR; Rancz EA; Brown AP; Strom M; Margrie TW
    Neuron; 2014 Sep; 83(6):1431-43. PubMed ID: 25175879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional organization of excitatory synaptic strength in primary visual cortex.
    Cossell L; Iacaruso MF; Muir DR; Houlton R; Sader EN; Ko H; Hofer SB; Mrsic-Flogel TD
    Nature; 2015 Feb; 518(7539):399-403. PubMed ID: 25652823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nogo Receptor 1 Confines a Disinhibitory Microcircuit to the Critical Period in Visual Cortex.
    Stephany CÉ; Ikrar T; Nguyen C; Xu X; McGee AW
    J Neurosci; 2016 Oct; 36(43):11006-11012. PubMed ID: 27798181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.